Зрительный пигмент
Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .
Смотреть что такое «Зрительный пигмент» в других словарях:
ЗРИТЕЛЬНЫЙ ПИГМЕНТ — структурно функц. единица светочувствит. мембраны фоторецепторов сетчатки глаза палочек и колбочек. Молекула 3. п. состоит из хромофора, поглощающего свет, и опсина комплекса белка и фосфолипидов. Хромофор представлен альдегидом витамина A1… … Биологический энциклопедический словарь
Зрительный пурпур — Родопсин (зрительный пурпур) основной зрительный пигмент в составе палочек сетчатки глаза человека и животных. Относится к сложным белкам хромопротеинам. Модификации белка, свойственные различным биологическим видам, могут существенно различаться … Википедия
ЗРИТЕЛЬНЫЙ(Е) ПИГМЕНТ(Ы) — См. фотопигмент … Толковый словарь по психологии
Родопсин (Rhodopsin), Пурпур Зрительный (Visual Purple) — содержащийся внутри палочек пигмент сетчатки глаза, в состав которого входит ретинальдегид (retinal) витамин А и белок. Наличие родопсина в сетчатке глаза необходимо для обеспечения нормального зрения при тусклом свете. Под воздействием света… … Медицинские термины
РОДОПСИН (RHODOPSIN), ПУРПУР ЗРИТЕЛЬНЫЙ — (visual purple) содержащийся внутри палочек пигмент сетчатки глаза, в состав которого входит ретинальдегид (retinal) витамин А и белок. Наличие родопсина в сетчатке глаза необходимо для обеспечения нормального зрения при тусклом свете. Под… … Толковый словарь по медицине
РОДОПСИН — (зрительный пурпур), светочувствит. сложный белок, осн. зрительный пигмент палочковых клеток сетчатки глаза у позвоночных животных и человека. Поглощая квант света (максимум поглощения ок. 500 нм), Р. распадается и вызывает возбуждение… … Естествознание. Энциклопедический словарь
РОДОПСИН — (зрительный пигмент), светочувствительный белок палочек сетчатки глаза позвоночных животных и зрительных клеток беспозвоночных. Р. гликопротеин (мол. м. ок. 40 тыс.; полипептидная цепь состоит из 348 аминокислотных остатков), содержащий… … Химическая энциклопедия
Родопсин — (от греч. rhódon роза и ópsis зрение) зрительный пурпур, основной Зрительный пигмент палочек сетчатки позвоночных (кроме некоторых рыб и земноводных на ранних стадиях развития) и беспозвоночных животных. По химической… … Большая советская энциклопедия
родопсин — (зрительный пурпур), светочувствительный сложный белок, основной зрительный пигмент палочковых клеток сетчатки глаза у позвоночных животных и человека. Поглощая квант света (максимум поглощения около 500 нм), родопсин распадается и вызывает… … Энциклопедический словарь
Родопсин — Основная статья: Палочки (сетчатка) Родопсин (устаревшее, но до сих употребляющееся название зрительный пурпур) основной зрительный пигмент. Содержится в палочках сетчатки глаза морских беспозвоночных, рыб, почти всех наземных… … Википедия
Источник
ЗРИТЕЛЬНЫЕ ПИГМЕНТЫ
Зрительные пигменты (лат. pigmentum краска) — светочувствительные пигменты фоторецепторов сетчатки глаза. Воспринимая энергию светового импульса, Зрительные пигменты претерпевают сложный цикл фотохимических превращений, в результате которых отдельный зрительный рецептор сетчатки глаза, содержащий Зрительные пигменты (колбочка или палочка), переходит в возбужденное состояние и по зрительному нерву передает полученную информацию в ц. н. с. Являясь основной структурно-функциональной частью фоторецепторной мембраны зрительных клеток сетчатки глаза, Зрительные пигменты таким образом играют ключевую роль в механизмах зрения (см.).
Номенклатура и строение зрительных пигментов
Все изученные Зрительные пигменты позвоночных и беспозвоночных животных представляют собой комплексы водонерастворимого мембранного белка опсина и связанного с ним хромофора (ретиналя). Ретиналь, или альдегид витамина А, может существовать в двух формах — ретиналь-1 и ретиналь-2.
По природе хромофора 3. п. разделяют на два класса — родопсины (см.), содержащие ретиналь1, и порфиропсины, содержащие ретиналь2. Родопсины содержатся в сетчатой оболочке глаза всех сухопутных и морских животных, порфиропсины — в сетчатке глаз пресноводных животных. У некоторых рыб и амфибий найдены 3. п., содержащие одновременно ретиналь! и ретиналь,. Есть попытки классифицировать 3. п. на основе различий в опсинах, специфичных для палочек или колбочек сетчатки глаза. Напр., родопсин — это комплекс ретиналя1 с палочковым опсином, йодопсин — ретиналя1 с колбочковым опсином, порфиропсин — ретиналя2 с палочковым опсином, комплекс ретиналь — колбочковый опсин образует цианопсин. Однако классифицировать 3. п. на основе опсинов крайне трудно, т. к. различных опсинов, по крайней мере, пять.
Из всех известных 3. п. наиболее полно исследованы родопсины, выделенные из глаз быка, лягушки и кальмара. Их мол. вес (масса) порядка 30—40 тыс., каждая молекула содержит ок. 400 аминокислот и один хромофор. Кроме того, в состав молекулы 3. п. входит олигосахаридная цепь: 3 радикала глюкозамина, 2 маннозы, 1 галактозы. Липиды (гл. обр. фосфолипиды) образуют с молекулой 3. п. прочный комплекс. Сохраняя свои основные спектральные свойства (см. Спектральный анализ), 3. п. без липидов теряют ряд функционально важных, напр, способность к восстановлению.
Чистый ретиналь имеет желтый цвет, максимум его спектра поглощения лежит в области 370 нм. Опсин бесцветен, максимум поглощения — в ультрафиолетовой области (ок. 280 нм). Цвет молекулы родопсина красновато-розовый, максимум спектра поглощения ок. 500 нм. Причина такого сильного спектрального сдвига при образовании комплекса (с 370 до 500 нм — так наз. батохромного сдвига) не получила до сих пор однозначного объяснения.
Максимумы спектров поглощения родопсинов и порфиропсинов захватывают достаточно широкую область видимого спектра — от 433 до 562 нм у родопсинов и от 510 до 543 нм у порфиропсинов. Если же к порфиропсинам относить и 3. п. колбочек головастика лягушки, карпа и пресноводной черепахи, т. е. цианопсин с максимумом спектра поглощения при 620 нм, то эта область оказывается еще шире. Развитие методов микроспектрофотометрии позволило определить спектры поглощения многих типов одиночных фоторецепторных клеток животных и человека. По полученным данным, 3. п. сетчатки человека имеют следующие максимумы спектров поглощения: палочки 498, сине-, зелено- и красночувствительные колбочки — 440, 535 и 575 нм соответственно.
Изучение Зрительных пигментов начато нем. исследователем Мюллером (H. Muller), который в 1851 г. описал, как извлеченная из глаза лягушки розовато-пурпурная сетчатка становится на свету сначала желтоватой, а потом белесой. В 1877 г. Болль (F. Boll) также описал этот феномен, сделав вывод, что в зрительных клетках сетчатки находится какое-то красное светочувствительное вещество и что обесцвечивание этого вещества связано с механизмом зрения. Большая заслуга в изучении 3. п. принадлежит Кюне (W. Kuhne, 1877), к-рому удалось выделить 3. п. и подробно исследовать их. Он назвал извлеченный им 3. п. зрительным пурпуром, установил его белковую природу, исследовал некоторые его спектральные свойства и фотопревращения, обнаружил способность 3. п. к восстановлению в темноте. Большой вклад в изучение 3. п. внес амер. биохимик и физиолог Дж. Уолд.
Фотопревращения зрительных пигментов
При действии на 3. п. света в них происходит цикл фотохимических превращений, в основе к-рого лежит первичная фотохимическая реакция цис-транс-изомеризации ретиналя (см. Изомерия). При этом происходит нарушение связи хромофора с белком. Последовательность превращений 3. п. может быть представлена следующим образом: родопсин (хромофор находится в цис-форме) —> прелюмиродопсин —> люмиродопсин —> метародопсин I —> метародопсин II —> белок опсин —> хромофор в транс-форме. Под влиянием фермента — ретинолдегидрогеназы — последний переходит в витамин А, который поступает из наружных члеников палочек и колбочек в клетки пигментного слоя сетчатки. При затемнении глаза происходит регенерация 3. п., для осуществления к-рой необходимо наличие цис-изомера витамина А, служащего исходным продуктом для образования хромофора (альдегида витамина А). При недостатке или отсутствии в организме витамина А может нарушиться образование родопсина и развиться как следствие расстройство сумеречного зрения, так наз. куриная слепота (см. Гемералопия). В процессе фотопревращений родопсина на стадии перехода люмиродопсина в метародопсин I в рецепторной клетке возникает в ответ на яркую вспышку так наз. ранний (коротколатентный) рецепторный потенциал. Вместе с тем он не является зрительным сигналом, хотя и может служить одним из тестов для исследования механизма превращений 3. п. в фоторецепторной мембране. Функциональное значение имеет так наз. поздний рецепторный потенциал, латентный период к-рого (5—10 мсек) соизмерим со временем образования метародопсина II. Предполагают, что реакция перехода метародопси-на I в метародопсин II обеспечивает возникновение зрительного сигнала.
Поскольку на свету Зрительные пигменты непрерывно обесцвечиваются, то должны существовать механизмы их постоянного восстановления. Одни из них чрезвычайно быстрые (фоторегенерация), другие достаточно быстрые, (биохимическая регенерация, Темновая), третьи медленные (синтез 3. п. в ходе постоянного обновления фоторецепторной мембраны в зрительной клетке). Фоторегенерация имеет физиол, значение у беспозвоночных животных (напр., у головоногих моллюсков — кальмаров, осьминогов). В механизме биохим. регенерации 3. п. у позвоночных важную роль, по-видимому, играет фермент изомераза (см.), обеспечивающий изомеризацию транс-ретиналя (или транс-витамина А) снова в цис-изомерную форму. Однако окончательных доказательств существования такого фермента пока не имеется. Сама же реакция образования молекулы Зрительного пигмента при наличии в системе 11-цис-изомера ретиналя и опсина происходит легко, без затраты энергии. Обнаружена способность обесцвеченного родопсина к реакции фосфорилирования (см.); предполагается, что эта реакция является одним из звеньев механизма световой адаптации зрительной клетки.
Библиография: Аккерман Ю. Биофизика, пер. с англ., М., 1964; Вилли К. и Деть e В. Биология, пер. с англ., М., 1974, библиогр.; Конев С. В. и Волотовский И. Д. Введение в молекулярную фотобиологию, с. 61, Минск, 1971; Островский М. А. и Федорович И. Б. Фотоиндуцированные изменения фоторецепторной мембраны, в кн.: Структура и функции биол, мембран, под ред. А. С. Трошина и др., с. 224, М., 1975, библиогр.; Физиология сенсорных систем, под ред. Г. В. Гершуни, ч. 1, с. 88, Л., 1971; Biochemistry and physiology of visual pigments, ed. by H. Lan-ger, В. a. o., 1973; Handbook of sensory physiology, ed. by H. A. R. Jung a. o., v. 7, pt 1—2, B., 1972.
Источник
Родопсин
Родопси́н (устаревшее, но до сих употребляющееся название — зри́тельный пу́рпур) — основной зрительный пигмент. Содержится в палочках сетчатки глаза морских беспозвоночных, рыб, почти всех наземных позвоночных и человека. Относится к сложным белкам хромопротеинам. Модификации белка, свойственные различным биологическим видам, могут существенно различаться по структуре и молекулярной массе.
Содержание
Функции родопсина
Под действием света светочувствительный зрительный пигмент изменяется и один из промежуточных продуктов его превращения непосредственно ответствен за возникновение зрительного возбуждения. Зрительные пигменты, содержащиеся в наружном сегменте фоторецепторной клетки, представляют собой сложные окрашенные белки (хромопротеиды). Та их часть, которая поглощает видимый свет, называется хромофором. Это химическое соединение — альдегид витамина А, или ретиналь. Белок зрительных пигментов, с которыми связан ретиналь, называется опсином.
При поглощении кванта света (фотона) хромофорная группа белка (11-цис-ретиналь) изомеризуется в транс-форму. Возбуждение зрительного нерва происходит при фотолитическом разложении родопсина за счёт изменения ионного транспорта в фоторецепторе. Впоследствии родопсин восстанавливается (регенерирует) в результате синтеза 11-цис-ретиналя и опсина или в процессе синтеза новых дисков наружного слоя сетчатки.
Родопсин относится к суперсемейству трансмембранных рецепторов GPCR (рецепторов, связанных с G-белками). При поглощении света конформация белковой части родопсина меняется, и он активирует G-белок трансдуцин, который активирует фермент цГМФ-фосфодиэстеразу. В результате активации этого фермента в клетке падает концентрация цГМФ и закрываются цГМФ-зависимые натриевые каналы. Так как ионы натрия постоянно выкачиваются из клетки АТФ-азой, концентрация ионов натрия внутри клетки падает, что вызывает её гиперполяризацию. В результате фоторецептор выделяет меньше тормозного медиатора глутамата, и в биполярной нервной клетке, которая «растормаживается», возникают нервные импульсы.
Спектр поглощения родопсина
Специфический спектр поглощения зрительного пигмента определяется как свойствами хромофора и опсина, так и характером химической связи между ними (подробнее об этом см. обзор: [1] ). Этот спектр имеет два максимума — один в ультрафиолетовой области (278 нм.), обусловленный опсином, и другой — в видимой области (около 500 нм.), — поглощение хромофора рис. 1. Превращение при действии света зрительного пигмента до конечного стабильного продукта состоит из ряда очень быстрых промежуточных стадий. Исследуя спектры поглощения промежуточных продуктов в экстрактах родопсина при низких температурах, при которых эти продукты стабильны, удалось подробно описать весь процесс обесцвечивания зрительного пигмента [2] .
В живом глазу наряду с разложением зрительного пигмента, естественно, постоянно идёт процесс его регенерации (ресинтеза). При темновой адаптации этот процесс заканчивается только тогда, когда весь свободный опсин соединился с ретиналем. [3]
Дневное и ночное зрение
Из спектров поглощения родопсина видно, что восстановленный родопсин (при слабом «сумеречном» освещении) отвечает за ночное зрение, а при дневном «цветовом зрении» (ярком освещении) разлагается и максимум его чувствительности смещается в синюю область. При достаточном освещении палочка работает совместно с колбочкой, являясь приёмником синей области спектра. [4] . Полное восстановление родопсина у человека занимает около 30 минут.
Примечания
- ↑ Островский М. А., Федорович С. Е., Голубев И. Н., 1967, Биофизика, 12 : 877.
- ↑ Hubbard R., Bownds D., Yoshizawa T., 1965. Cold Spring Harbor Symp. Biol., 30 : 301.
- ↑ АН СССР, объединённый научный совет «физиология человека и животных», Физиология сенсорных систем. Ч. 1. Физиология зрения. 1971 г., Издательство «Наука», Ленинградское отделение. Стр. 94 — 101
- ↑ С. Д. Ременко, «Цвет и зрение», «Картеа Молдовеняскэ», Кишинёв, 1982 г.
Ссылки
- ↑ Островский М. А., Федорович С. Е., Голубев И. Н., 1967, Биофизика, 12 : 877.
- ↑ Hubbard R., Bownds D., Yoshizawa T., 1965. Cold Spring Harbor Symp. Biol., 30 : 301.
- ↑ АН СССР, объединённый научный совет «физиология человека и животных», Физиология сенсорных систем. Ч. 1. Физиология зрения. 1971 г., Издательство «Наука», Ленинградское отделение. Стр. 94 — 101
- ↑ С. Д. Ременко, «Цвет и зрение», «Картеа Молдовеняскэ», Кишинёв, 1982 г.
Этимология
Название «родопсин» происходит от др.-греч. ρόδον — роза и др.-греч. όπσις — зрение.
Источник