Меню

Жирорастворимым витамином является тиамин

Роспотребнадзор

Роспотребнадзор

Водорастворимые и жирорастворимые витамины — Здоровый образ жизни

Здоровый образ жизни

Водорастворимые и жирорастворимые витамины

Водорастворимые и жирорастворимые витамины

Витамины делятся на две большие группы — водорастворимые и жирорастворимые.

К водорастворимым витаминам относятся: витамины С, В1, В2, В3 (РР), В6, В12, фолиевая кислота, пантотеновая кислота и биотин. Их основная особенность — не накапливаться в организме совсем либо их запасов хватает на очень продолжительное время. Поэтому, передозировка возможна лишь для некоторых из водорастворимых витаминов.

Витамин С — аскорбиновая кислота участвует чуть ли не во всех биохимических процессах организма. Обеспечивает:

  • нормальное развитие соединительной ткани;
  • заживление ран;
  • устойчивость к стрессу;
  • нормальный иммунный статус;
  • поддерживает процессы кроветворения.

Суточная потребность до 30 мг (дети до 3-х лет) до 120 мг (кормление грудью). Большое количество вызывает расстройство кишечника и плохо влияет на почки. Содержится в овощах и фруктах, больше всего — в болгарском перце, черной смородине, шиповнике, облепихе, листовой зелени, свежей капусте, цитрусовых.

Витамин В1 — тиамин обеспечивает проведение нервных импульсов. Суточная потребность 1,5 мг. Содержится в хлебе из муки грубого помола, сое, фасоли, горохе, шпинате, нежирной свинине и говядине, особенно в печени и почках.

Витамин В2 — рибофлавин обеспечивает: окисление жиров; защиту глаз от ультрафиолета. Суточная потребность: 1,8 мг. Содержится в яйцах, мясе, молоке и молочных продуктах, особенно в твороге, печени, почках, гречке.

Витамин В3 — ниацин (витамин РР) обеспечивает «энергетику» практически всех протекающих в организме биохимических процессов. Суточная потребность: 20,0 мг. Содержится в ржаном хлебе, гречке, фасоли, мясе, печени, почках.

Витамин В6 — пиридоксин обеспечивает: усвоение белка; производство гемоглобина и эритроцитов; равномерное снабжение клеток глюкозой. Суточная потребность: 2,0 мг. Содержится в мясе, печени, рыбе, яйцах, цельнозерновом хлебе.

Витамин В12 — кобаламин обеспечивает: нормальный процесс кроветворения; работу желудочно-кишечного тракта; клеточные процессы в нервной системе. Суточная потребность: 3,0 мкг. Содержится в продуктах животного происхождения: мясе, твороге и сыре.

Фолиевая кислота чрезвычайно важна при беременности обеспечивает: нормальное формирование всех органов и систем плода. Обеспечивает: синтез нуклеиновых кислот (прежде всего ДНК); внутреннюю защиту от атеросклероза. Суточная потребность: 400,0 мг. Для беременных — 600 мг, для кормящих -500 мг. Содержится в зеленых листовых овощах, в бобовых, хлебе из муки грубого помола, печени.

Пантотеновая кислота обеспечивает обмен жирных кислот, холестерина, половых гормонов. Суточная потребность: 5,0 мг. Содержится в горохе, фундуке, зеленых листовых овощах, гречневой и овсяной крупе, цветной капусте, печени, почках и сердце, курином мясе, яичном желтке, молоке.

Биотин обеспечивает клеточное дыхание, синтез глюкозы, жирных кислот и некоторых аминокислот. Суточная потребность: 50,0 мкг. Содержится в дрожжах, помидорах, шпинате, сое, яичном желтке, грибах, печени.

К жирорастворимым витаминам относятся: витамины А, Д, Е и К. Их основная особенность — способы накапливаться в тканях организма, в основном, в печени.

Витамин А — ретинол обеспечивает:

  • процессы роста и размножения;
  • функционирование кожного эпителия и костной ткани;
  • поддержание имуннологического статуса;
  • восприятие света сетчаткой глаза.

Суточная потребность 900 мкг. Содержится в виде ретинола в животной пище (Рыбий жир, печень, особенно говяжья, икра, молоко, сливочное масло, сметана, творог, сыр, яичный желток) и в виде провитамина каротина в растительной (зеленые и желтые овощи, морковь, бобовые, персики, абрикосы, шиповник, облепиха, черешня).

Витамин Д — кальциферол чрезвычайно важен для новорожденного ребенка, без этого витамина невозможно нормальное формирование скелета. Кальциферол может образовываться в коже под действием солнечного света. Обеспечивает обмен кальция и фосфора в организме; прочность костной ткани. Суточная потребность 10,0 мкг (400 МЕ). Содержится в печени рыбы. В меньшей степени — в яйцах птиц. Часть витамина Д поступает в организм не с пищей, а синтезируется в коже под действием солнечных лучей.

Витамин Е — токоферол один из основных антиоксидантов нашего организма, инактивирующий свободные радикалы и предотвращающий разрушение клеток. Суточная потребность: 15 мг. Содержится в растительных маслах: подсолнечном, хлопковом, кукурузном, миндале, арахисе, зеленых листовых овощах, злаковых, бобовых, яичном желтке, печени, молоке.

Витамин К — обеспечивает в синтез в печени некоторых факторов свертывания крови, участвует в формировании костной ткани. Суточная потребность: 120,0 мкг. Содержится в шпинате, цветной и белокочанной капусте, листьях крапивы, помидорах, печени.

Источник

Жирорастворимые витамины (A, D, E, K)

Жирорастворимые витамины – витамины A, D, E, K, которые являются жизненно важными микронутриентами, необходимыми для нормальной функции клеток, метаболизма белков, жиров, углеводов и электролитов, работы различных ферментных систем организма, окислительно-восстановительных процессов, свертываемости крови, роста и развития. Дефицит витаминов оказывает серьезное отрицательное влияние на здоровье человека и функции многих органов, а переизбыток некоторых витаминов – токсическое действие.

Жирорастворимые витамины (ретинол, кальциферол, токоферол, 2-метил-1,4-нафтохинон)

Синонимы английские

Fat soluble vitamins

Высокоэффективная жидкостная хроматография-масс-спектрометрия (ВЭЖХ-МС)

Мкг/мл (микрограмм на миллилитр), нг/мл (нанограмм на миллилитр)

Какой биоматериал можно использовать для исследования?

Как правильно подготовиться к исследованию?

  • Не принимать пищу в течение 8 часов до исследования, можно пить чистую негазированную воду.
  • Не курить в течение 30 минут до исследования.

Общая информация об исследовании

Витамины – эссенциальные органические вещества, необходимые организму в небольших количествах. Они входят в состав коферментов, участвующих в окислительно-восстановительных реакциях, тканевом дыхании, синтезе белков, жиров и углеводов, образовании гормонов, росте, созревании и делении клеток, формировании тканей, защите от инфекций. По биохимическим свойствам витамины разделяются на водорастворимые (витамины группы В, витамин С) и жирорастворимые (витамины А, D, Е, К).

Организм человека не способен самостоятельно синтезировать витамины, однако некоторые могут накапливаться в печени (витамины А, D, Е). Для их абсорбции из пищевого тракта необходимо присутствие жиров. Витамины содержатся в продуктах растительного и животного происхождения. При термической обработке, воздействии света содержание витаминов в продуктах уменьшается. Также они разрушаются под влиянием алкоголя, никотина, кофеина. Жирорастворимые витамины способны накапливаться в организме и оказывать токсическое воздействие в высоких дозах.

Дефицит витаминов возникает при несбалансированном и нерациональном питании, заболеваниях желудочно-кишечного тракта, которые сопровождаются нарушением всасывания питательных веществ, выделения желчи (для жирорастворимых витаминов), или при повышенном потреблении витаминов в метаболизме (например, при беременности, лактации).

Витамин А необходим для нормального зрения, роста и дифференциации эпителиальной ткани, роста костей, развития плода, функционирования иммунной и репродуктивной систем. В организме ретинол синтезируется из жирорастворимого провитамина – бета-каротина. Источниками бета-каротина являются тыква, морковь, батат, зелёный лук, щавель, шпинат, латук, салат, салат, капуста кейл, помидоры, красный перец, брокколи, грейпфруты, сливы, персики, дыни, абрикосы, хурма, крыжовник, черника, чёрная смородина, ретинола – рыбий жир, печень, сливочное масло, желток, молоко. Суточная потребность в ретиноле для детей в зависимости от возраста – 400-900 мкг, для взрослых – 900 мкг. Усваиваемость витамина А из кишечника уменьшается при недостаточном количестве витамина Е и цинка. Признаками гиповитаминоза А являются нарушения развития костей костей и зубов, ощущение сухости и раздражения глаз, потеря волос, снижение аппетита, кожные высыпания, рецидивирующие инфекции и нарушения ночного зрения («куриная слепота»). В отличие от витамина А бета-каротин в повышенных дозах не обладает токсическими свойствами и не вызывает гипервитаминоза. Чрезмерное употребление витамина А может привести к головокружению, повышению внутричерепного давления, хейлиту, алопеции, фиброзу печени. В высоких дозах ретинол оказывает тератогенное действие.

Читайте также:  Витамин масло для кончиков волос

Витамин D (кальцитриол) является предшественником гормона, ответственного за кальциевый обмен и регуляцию формирования костной ткани. Основными источниками предшественников витамина Dявляются жирные сорта рыбы, рыбий жир, сливочное масло, сыр и другие молочные продукты, желток. Под действием ультрафиолета в коже они превращаются в активные формы гормона, препятствующие развитию рахита у детей и остеопороза и остеомаляции у взрослых. Дефицит витамина D ассоциирован с сердечно-сосудистыми, онкологическими и аутоиммунными заболеваниями. Учитывая возможность передозировки холекальциферола, при профилактическом приеме доза препарата не должна превышать 10-15 мкг/сут. Длительный избыток витамина D может стать причиной кальцификации тканей и повреждения почек. При употреблении холекальциферола в высоких дозах может возникнуть головная боль, желудочно-кишечные расстройства.

Витамин Е является важным антиоксидантом, антигипоксантом, иммуномодулятором и коферментом в процессах формирования коллагена, принимает участие в регуляции липидного баланса, экспрессии генов, неврологических функций. При сбалансированном питании в организм из растительных масел, орехов, зеленых листовых овощей, злаков, желтка, печени, молока поступает достаточное количество витамина. На фоне дефицита витамина Е возникает периферическая нейропатия, миопатия, бесплодие. Глубокий авитаминоз проявляется гемолитической анемией. Повышенное содержание витамина Е в организме уменьшает агрегацию тромбоцитов и формирование кровяного сгустка.

Витамин К необходим для синтеза факторов свертывания крови. В небольшом количестве витамин К синтезируется микробиотой толстой кишки. Пищевыми источниками являются зеленые листовые овощи, различные виды капусты, злаковые, отруби, мясо, молочные продукты, яйца, фрукты, оливковое масло. Рекомендованная дневная норма витамина К – 120 мкг/сут. При его дефиците возникают кровотечения, а при переизбытке – гемолитическая анемия и гипербилирубинемия у детей.

По ряду различных причин может развиться дефицит отдельных витаминов (например, цинга, арибофлавиноз, пеллагра, бери-бери, рахит), но поливитаминная недостаточность наблюдается чаще. Нарушения пищеварения, патологии поджелудочной железы, печени и тонкого кишечника приводят к снижению абсорбции витаминов и провитаминов из пищи. Исследование уровня жирорастворимых витаминов в крови позволяет оценить обеспеченность организма данными эссенциальными веществами, дифференцировать различные варианты гипо- и гипервитаминозов, обосновать мероприятия по коррекции витаминной недостаточности и подобрать адекватную диету и лечебную терапию.

Для чего используется исследование?

  • Диагностика недостаточности жирорастворимых витаминов;
  • дифференциальная диагностика гипо- и гипервитаминозов и клинически схожих состояний;
  • оценка сбалансированности питания;
  • диагностика гипервитаминозов.

Когда назначается исследование?

  • При синдроме мальабсорбции на фоне заболеваний желудочно-кишечного тракта (целиакия, муковисцидоз, воспалительные заболевания кишечника, патология поджелудочной железы, состояния после резекции желудка и/или тонкой кишки, обструкция желчевыводящих путей);
  • при клинических признаках недостаточности жирорастворимых витаминов (дерматиты, сухость слизистых, длительная диарея, неврологические нарушения, анемии, нарушения репродуктивной функцией);
  • при обследовании пациентов с гипотрофией, алкоголизмом или находящихся на парентеральном питании;
  • при стеаторее (повышенном содержании жиров в стуле в связи с их недостаточной абсорбцией в кишечнике).

Источник

Витамин В1

Опубликовано чт, 20/06/2019 — 14:56

Тиамин (витамин B1) является важным питательным веществом, которое служит кофактором для ряда ферментов, в основном с митохондриальной локализацией. Некоторые зависимые от тиамина ферменты участвуют в энергетическом метаболизме и биосинтезе нуклеиновых кислот, тогда как другие являются частью антиоксидантного механизма. Мозг очень уязвим для дефицита тиамина из-за его зависимости от митохондриальной продукции АТФ. Это положение более очевидно во время быстрого роста детей, при котором дефицит тиамина обычно связан с недоеданием или генетическими дефектами. Дефицит тиамина способствует возникновению ряда расстройств неврологических и психопатологических симптомов (спутанность сознания, снижение памяти и нарушения сна) до тяжелой энцефалопатии, атаксии, застойной сердечной недостаточности, мышечной атрофии и даже смерти.

Основным питательным веществом тиамина (витамин B1) является водорастворимый серосодержащий витамин, принадлежащий к комплексу витаминов группы B. Не будучи эндогенно синтезированным, единственным доступным источником тиамина являются некоторые продукты питания (говядина, птица, крупы, орехи и бобы). Организм не хранит тиамин > 30 мг, а период полураспада для тиамина составляет всего 9–18 дней. При среднем потреблении продуктов питания на уровне в 2000 ккал,( потребляемом ежедневно), минимальная потребность в тиамине составляет 0,66 мг , однако, рекомендуемая суточная доза для взрослых мужчин и женщин составляет 1,2 и 1,1 мг соответственно. Во время беременности или кормления грудью потребность в витамине В1 увеличивается до 1,4 мг / день. У детей рекомендуемая диета (RDA) зависит от возраста и составляет от 0,2 мг (от рождения до 6 месяцев) до 0,6 мг (от 6 месяцев до 8 лет). В организме человека богатыми тиамином ткани являются скелетные мышцы, сердце, печень, почки и мозг.

В развитых странах преобладающее использование промышленной обработки пищевых продуктов часто истощает содержание тиамина наряду с другими витаминами и питательными веществами. Повышенное потребление обработанных пищевых продуктов в форме простых углеводов, не дополненных адекватными уровнями тиамина, было названо «калорийным недоеданием». С другой стороны , по меньшей мере, у 29% пациентов с ожирением, которым предстоит хирургическое операции на бариатрической стадии, отмечается как дефицит тиамина. Поскольку тиамин является ключевым фактором метаболизма глюкозы, увеличение потребления углеводов будет пропорционально увеличивать диетическую потребностьи в тиамине (минимум 0,33 мг на 1000 ккал). Таким образом, вместо того, чтобы сосредоточиться на RDA тиамина, важно сопоставить его потребление с потреблением углеводов, а также с общим потреблением калорий.

В развивающихся странах дефицит тиамина остается широко распространенной проблемой из-за высоких показателей потребления белого риса. Поскольку домашние методы измельчения заменяются промышленным измельчением и переработкой риса, важные питательные вещества (такие как тиамин) в отрубях удаляются. Азиатские страны потребляют около 90% риса, произведенного во всем мире, реализуя , по оценкам специалистов , 60% суточной потребности населения в потреблении энергии с пищей, и, следовательно, дефицит тиамина достаточно распространен среди 15% подросткового населения. Дефицит тиамина может развиться при употреблении в пищу диет, загрязненных метаболизирующими тиамин ферментами (например, тиаминазой) или подверглись инактивации тиамина нагреванием и / или диоксидом серы. Чрезмерное употребление танинсодержащих или пищевых продуктов, богатых кофеином, теобромином и теофиллином (например, содержащихся в кофе, шоколаде и чае соответственно), может инактивировать тиамин, тем самым нарушая его статус.

Другие факторы риска , которые увеличивают вероятность недостаточного потребления тиамина включают старение, низкий экономический статус, расстройства пищевого поведения, соматические заболевания , в частности, влияющие на желудочно — кишечный тракт, искусственное питание, бариатрическая хирургия, диабет и злоупотребление алкоголем. Сообщается о неудовлетворенных потребностях в увеличении потребления тиамина в пищу во время лактации, беременности и повышенной физической активности. Во время лактации у детей повышается риск развития авитаминоза , в частности, у дефиците тиамина у матерей. Например, у 27% женщин детородного возраста в Камбодже имеет место дефицит тиамина, а у 38% младенцев диагностирован дефицит тиамина, что является критической проблемой, которая в значительной степени способствует смертности 3-месячных детей. Однако даже при наличии достаточного потребления тиамина его дефицит может быть обусловлен генетическими факторами, то есть патогенными мутациями генов в ключевых регуляторах пути трансформации тиамина, включая тиаминпирофосфокиназу 1 (ТПК1), тиаминдифосфаткиназу (TDPK), тиаминтрифосфатазу (THTPA) и переносчики тиамина (SLC25A19, SLC19A2 / THTR1 и SLC19A3 / THTR. также было показано, что переносчик органических катионов 1 (OCT1) действует как транспортер тиамина в печени.

Читайте также:  Когда можно пить витамины для беременных элевит

Независимо от основной причины дефицита тиамина большинство симптомов проявляются на неврологическом уровне. Дефицит тиамина может вызвать повреждение тканей головного мозга, ингибируя использование энергии мозга, учитывая критическую роль тиамин-зависимых ферментов, связанных с использованием глюкозы. Это подтверждается значительным уровнем поглощения тиамина гематоэнцефалическим барьером, что подчеркивает высокую потребность мозга в тиамине и потребность в его снабжении для поддержания адекватных функций мозга, особенно в тех областях мозга, где требуются высокий уровень метаболизма и оборот тиамина.

Как и у большинства гидрофильных микроэлементов, поглощение тиамина происходит в основном в тонком кишечнике. В пищеварительном тракте пищевые белки гидролизуются, выделяя тиамин. В просвете кишечника щелочные фосфатазы катализируют гидролиз тиаминфосфорилированных производных в свободный тиамин. Нефосфорилированный свободный тиамин в концентрациях, превышающих 1 мкМ, поступает в энтероцит путем пассивной диффузии, тогда как на более низких уровнях он транспортируется через систему насыщения тиамином / H + ( переносчик тиамина 1 или THTR1) в зависимости от количества энергии. В условиях дефицита тиамина в клетках Caco2 в культуре наблюдалась активация экспрессии переносчика тиамина 2 (THTR2), что позволяет предположить, что диета может модулировать экспрессию этого транспортера . Внутри энтероцита тиамин фосфорилируется до тиаминпирофосфата (TPP) с помощью TPK1. Затем большая часть TPP дефосфорилируется до тиаминмонофосфата (TMP), чтобы пересечь базальную мембрану энтероцита. TMP высвобождается в кровоток через ATPase-зависимую транспортную систему. Свободный тиамин также может попасть в кровь через транспортер тиамина 2 (THTR2), расположенный в основном на базолатеральной мембране энтероцита. Попадая в кровь, в то время как очень низкие уровни TMP и тиамина циркулируют свободно в плазме или сыворотке, более 90% фосфорилированного тиамина (в форме TPP) присутствует в эритроцитах и ​​лейкоцитах. Примечательно, что изоформа 3 носителя SLC44A4 недавно была описана как носитель TPP в толстой кишке. Первоначально SLC44A4 был описан как транспортер холина, связанный с не нейрональным синтезом холина и необходимый для эфферентной иннервации волосковых клеток в оливо-кохлеарном пучке для поддержания физиологической функции наружных волосковых клеток и защиты волосковых клеток. от акустической травмы. Последние данные указывают на то, что этот носитель может опосредовать абсорбцию микробиоты, генерируемой TPP (особенно у младенцев), и способствовать гомеостазу тиамина хозяина.

Клеточное поглощение тиамина из кровотока может быть опосредовано любым из двух высокоаффинных носителей: THTR1 (кодируется SLC19A2) и THTR2 (кодируется SLC19A3). Эти транспортеры выражены повсеместно, но THTR1 наиболее распространен в кишечнике, скелетных мышцах, нервной системе и глазах, за которым следуют плацента, печень и почка, тогда как THTR2 находится в основном в жировой ткани, печени, лимфоцитах, селезенке, желчном пузыре, плаценте. поджелудочной железе и мозге. После внутриклеточной транспортировки свободный тиамин быстро фосфорилируется до TPP с помощью тиаминпирофосфокиназы (TPK1). Вторая киназа, TDPK, добавляет фосфатную группу к TPP для генерирования тиаминтрифосфата (TTP). TPP и TTP могут быть дефосфорилированы, соответственно, до TMP и TPP с помощью фосфатаз — простатической кислой фосфатазы (ACPP) и THTPA соответственно.

До 90% от общего количества тиамина в организме остается в его дифосфате , метаболически активной форме (TPP), тогда как остальное находится в виде TMP и TTP. TPP является кофактором нескольких тиамин-зависимых ферментов, участвующих в метаболизме углеводов и жирных кислот, а именно цитозольной транскетолазы (TKT), пероксисомальной 2-гидроксиацил-CoA лиазы 1 и трех митохондриальных ферментов (пируватдегидрогеназы, α-кетоглутаратдегидрогеназы и разветвленных). -цепные α-кетокислотные дегидрогеназные комплексы. Биохимическая роль TPP хорошо понятна, но биологическая значимость и вклад TTP не совсем ясны. Ранее считалось, что это специфическая нейроактивная форма тиамина, но в последнее время сообщалось, что TTP (составляет ∼10% от общего пула тиамина мозга) участвует в возбудимости мембраны и нервной проводимости, действуя в качестве модулятора проницаемости хлоридно-натриевых каналов.

В цитозоле TPP действует как кофактор для TKT, ключевого фермента неокислительной ветви пентозофосфатного пути (PPP). Этот метаболический путь генерирует никотинамидадениндинуклеотидфосфат (NADPH) и рибозо-5-фосфат (R5P). NADPH является ключевым восстановителем в биосинтетических реакциях и является одним из субстратов биосинтетических ферментов (синтез жирных кислот) и антиоксидантных ферментов, таких как глутатионпероксидаза-редуктазная система и тиоредоксинпероксидазы.Важное участие R5P в биосинтезе ДНК и РНК подчеркивает критическую роль тиамина в высокопролиферирующих тканях.

Исходя из его роли в биохимических путях, предполагается , что дефицит тиамина приведет к усилению окислительного стресса и снижению пролиферации клеток, а также к снижению синтеза жирных кислот (включая миелин) с тяжелыми последствиями, особенно во время развития мозга. В соответствии с этим предположением, дефицит тиамина снижает активность TKT и приводит к нарушению PPP и снижению нейрогенеза в коре и гиппокампе во время развития нервной системы.

Пероксисомы играют важную роль в катаболизме перекиси водорода, а также в укорочении очень длинных жирных кислот (которые не могут подвергаться прямому катаболизму β-окисления митохондрий) и α-окислении. В последнем процессе TPP-зависимый фермент 2-гидроксиацил-СоА лиаза 1 (HACL1) катализирует расщепление 3-метилразветвленных и 2-гидрокси длинноцепочечных жирных кислот с прямой цепью. Фитановая кислота (3-метилзамещенная 20-углеродная жирная кислота с разветвленной цепью), в отличие от большинства жирных кислот, не может подвергаться β-окислению из-за наличия метильной группы в положении 3. Как таковой, он расщепляется HACL1 в результате первоначального α-окисления. Эта жирная кислота с разветвленной цепью получается из рациона, особенно из молочных продуктов и красного мяса. Нарушение катаболизма фитановой кислоты из-за неадекватных уровней TPP приводит к накоплению триглицеридов, что может вызывать негативные эффекты, такие как мозжечковая атаксия, периферическая полиневропатия, потеря зрения и слуха, аносмия, а в некоторых случаях дисфункция сердца и эпифизарная дисплазия. Симптомы, вызванные дефицитом тиамина, характерны для болезни Рефсума, которая вызвана патогенными мутациями в HACL1. Некоторые из симптомов также наблюдаются при аутосомно-рецессивном системном расстройстве, синдроме Зеллвегера и других пероксисомальных заболеваниях, включая неонатальную адренолейкодистрофию. Синдром Зеллвегера вызван патогенными мутациями в генах пексинов, которые кодируют белки, необходимые для сборки функциональных пероксисом. Он характеризуется дефицитом пути окисления пероксисомных жирных кислот, вызывающего тяжелую неврологическую и печеночную дисфункцию, а также черепно-лицевые нарушения.

Большая часть (∼90%) цитозольного TPP транспортируется в митохондрии с помощью митохондриального переносчика тиаминпирофосфата MTPPT, продукт гена SLC25A19. Этот транспортер обеспечивает обмен цитозольного TPP на митохондриальный TMP; Попав в цитозоль, TMP метаболизируется и превращается обратно в TPP. В митохондриях TPP является критическим кофактором для трех ферментов, а именно пируватдегидрогеназы, α-кетоглутаратдегидрогеназы и α-кетокислотной дегидрогеназы с разветвленной цепью (PDH, αKGDH и BCKDH, соответственно).

Пируватдегидрогеназный комплекс — мультисубъединичный комплекс катализирует TPP- зависимое декарбоксилирование пирувата, генерируя ацетил-КоА, который затем входит в цикл Кребса. Регуляция активности PDH представляет собой ключевой метаболический «переключатель», влияющий на выбор «топлива», то есть между окислением жирных кислот и гликолитическим потоком. Было высказано предположение, что неспособность регулировать выбор топлива для производства метаболической энергии лежит в основе «метаболической жесткости», приводящей к метаболическим нарушениям. Следовательно, опосредованное тиамином ингибирование комплекса PDH блокирует систему в окислении глюкозы в пируват, что приводит к увеличению лактата и снижению клеточной продукции АТФ. Как и ожидалось, в тяжелых случаях метаболический дефицит проявляется как фатальный лактоацидоз у новорожденных, тогда как в более легких случаях неврологические состояния могут приводить к структурным нарушениям в центральной нервной системе (ЦНС), судорогам, умственной отсталости и спастичности.

Читайте также:  Как проверить каких витаминов мне не хватает

В случае дефицита тиамина наиболее пораженными участками мозга, по-видимому, являются мозжечок, мамиллярные тела, таламус, гипоталамус и ствол мозга у взрослых. Что касается дефицита тиамина, Zhao et al.(2009) показали, что у мышей депривация тиамина в течение 14 дней приводила к различной степени дефицита ферментов при тестировании на активность TKT, PDH и αKGDH в коре и гиппокампе.

Патогенные мутации в генах, кодирующих ферменты и транспортеры, участвующие в метаболизме тиамина, приводят к симптомам, сходным с теми, что обнаруживаются при дефиците тиамина на основе питания, и перекрываются с нарушениями митохондриальной дисфункции . Эти мутации, затрагивающие гены, ответственные за транспортеры тиамина 1 ( SLC19A2 ; OMIM 249270) и 2 ( SLC19A3 ; OMIM 607483), составляют основную причину субоптимального всасывания тиамина в кишечнике и, как следствие, недостаточного клеточного распределения тиамина по организму.

Как указано выше, патология дефицита тиамина влечет за собой нарушение выработки энергии из митохондрий в форме АТФ при использовании субстратов, генерирующих пируват (например, глюкозы), а также повышенный окислительный стресс. В этих условиях глюкоза черезгликолиз образует пируват, который не может войти в цикл Кребса в виде ацетил-КоА из-за низкой активности PDH. Как таковой, пируват трансаминируется в Ala или восстанавливается до лактата спомощью лактатдегидрогеназы. Это согласуется с повышенным уровнем лактата и органических кислот, наблюдаемых в CSF, моче и крови при дефиците тиамина.

Центральная нервная система человека обладает высокой потребностью в энергии: 2% массы тела контролируют около 20% общих метаболических расходов, большая часть которых расходуется на потенциалы возбуждающего действия, на передачу сигналов между нейронами, через химические синапсы, рост аксонов. и миелинизацию. Поскольку глюкоза является основным «топливом» для производства энергии в головном мозге, неудивительно, что митохондриальная дисфункция и последующее нарушение метаболизма глюкозы связаны с несколькими неврологическими расстройствами и нарушениями развития нервной системы и основными психическими заболеваниями, такими как депрессия и шизофрения.

Неврологические симптомы при дефиците тиамина сходны с дефектами, которые чаще всего проявляются как синдром Ли-Ли с вовлечением базальных ганглиев. Следовательно, нервная система, которая специализируется на использовании глюкозы для выработки энергии, кажется наиболее уязвимой для дефицита PDHC из-за истощения TPP. В мозге плохое производство АТФ в митохондриях будет ограничивать поддержание мембранного потенциала посредством действия Na + , K +-АТФазы, тем самым нарушая нервную проводимость и процессы в синапсах. Кроме того, повышенный окислительный стресс из-за более низкой активности TKT повредит критические биомолекулы, инициируя перекисное окисление липидов и окислительное повреждение белков, что приводит к фрагментации, посттрансляционным модификациям и перекрестным связям. Модификация эпитопов на нормальных, эндогенных молекулах может приводить к активации микроглии и иммунных клеток, усугубляя вызванное окислительным стрессом повреждение.

Уровни тиамина в крови и CSF предоставляют ограниченную информацию при оценке состояния тиамина у субъекта, поскольку они не обязательно отражают метаболическую функцию тиамина или прямую связь с его уровнями в тканях. Таким образом, оценки TKT эритроцитов и, если возможно, оценки других тканеспецифичных TPP-зависимых ферментов (PDH, αKGDH) считаются золотыми стандартами. Базовая активность TKT обычно выражается в единицах на грамм гемоглобина (г Hb), но, что более важно, рассчитывается процент активации TKT в добавках к TPP (0-15% считаются нормальными).

Коэффициент активации TKT (эритроциты) и / или активность TPP-зависимых ферментов (лейкоциты, фибробласты кожи и биопсия мышц) обычно сопровождаются тестированием уровней лактата и пирувата в сыворотке, BCAA, органических кислот, а также методами визуализации мозга. Единственными случаями, когда оценка свободного тиамина в плазме / сыворотке и CSF, по-видимому, является ценным диагностическим инструментом, являются случаи патогенных мутаций в SLC19A3. Точно так же экскреция тиамина с мочой также не является надежным методом для оценки его уровня в организме, поскольку он зависит от его потребления и всасывания. Как правило, он выражается в расчете на единицу креатинина для учета функции почек, и следует учитывать возраст, так как нормальные значения у детей различаются [120 нмоль / ммоль креатинина в возрасте 1–13 лет] и взрослые [220 нмоль / ммоль креатинина в возрасте> 18 лет ].

К сожалению, ранние симптомы дефицита тиамина не выражены или недостаточно различимы, чтобы поставить прямой диагноз. Они включают потерю аппетита, тошноту, слабость, апатию, усталость, раздражение, нарушения сна, анорексию и дискомфорт в животе. Кроме того, выявление конкретных клинических симптомов дефицита тиамина является проблематичным, поскольку оно скрывается за счет влияния других сопутствующих состояний (сопутствующих заболеваний), таких как инфекции и / или разнообразные нарушения питания.

Клиническая классификация дефицита тиамина обычно делится на «сухую» (или невритическую, характеризующуюся полиневропатией, сниженным коленным рефлексом и другими сухожильными рефлексами и прогрессирующей сильной слабостью мышц) и «влажную» (или сердечную, характеризующуюся отеком ног, тела и лица высокий сердечный выброс, желудочковая недостаточность и застой в легких).

При раннем подозрении на генерализованный дефицит тиамина рекомендуется незамедлительное введение тиамина и, как правило, эффективное лечение. В литературе сообщается о широком диапазоне терапевтических подходов и доз тиамина от 1,5 до 600 мг / день , с 10–20 мг / день в виде разделенных доз в течение нескольких недель от легкой полиневропатии и 20–30 мг / день. от умеренной до тяжелой, обычно до исчезновения симптомов. Как правило, дефицит тиамина купируеся с помощью доз 5–30 мг / сут внутривенно (в / в) или внутримышечно (в / м) три раза в день, затем 5–30 мг / сут перорально до исчезновения симптомов. Однако этот подход заметно менее эффективен для людей с хроническими формами нарушений, связанных с дефицитом тиамина, включая энцефалопатии или дефициты TPK1. В последнем случае стоило бы исследовать лечение непосредственно с помощью TPP; однако неясно, будет ли эта форма фосфорилированного тиамина преодолевать гематоэнцефалический барьер и / или достигать субклеточных мишеней, таких как PDH.

Ряд исследований показал обратную связь между уровнями тиамина и симптомами депрессии у взрослых. Исследование показало, что симптомы депрессии значительно улучшились у пациентов с большой депрессией после 6 недель приема тиамина по сравнению с плацебо. Эффекты от приема тиамина могут быть значительными в качестве паллиативного лечения при послеродовой депрессии и играть важную роль в последующем когнитивном развитии ребенка. PPD ассоциируется с повышенным риском развития неспособности к обучению, синдрома дефицита внимания / гиперактивности (ADHD) и тревожных расстройств у детей младшего возраста, что делает PPD критической проблемой как для матери, так и для младенца. Следовательно, добавки с тиамином могут в некоторой степени улучшить углеводный обмен, функцию митохондрий и выработку энергии в мозге.

Источник

Adblock
detector