Меню

Жирорастворимые витамины структурные формулы

ЖИРОРАСТВОРИМЫЕ ВИТАМИНЫ

По химической структуре все жирорастворимые витамины, за исключением витамина F, являются изопреноидами (терпенами). Это обширная группа соединений, к которой также относятся каротиноиды, стерины, каучук и др. Жирорастворимые витамины выполняют в организме некоферментные функции.

Витамин А (ретинол). Этот витамин существует в двух формах (рис. 46), сходных по химическому строению и обладающих разным физиологическим действием, – ретинол (витамин А1) и дегидроретинол (витамин А2). Витамин А, легко окисляясь, дает начало группе ретиноидов, к которой принадлежат ретиналь и ретиноевая кислота. Предшественником биосинтеза витамина А служит b-каротин, при расщеплении одной молекулы которого образуются две молекулы ретинола.

Рис. 46. Структура витамина А

Биологическая роль витамина А и его форм состоит в регуляции дифференцировки клеток, предупреждении ороговения эпителиальных тканей, осуществлении репродуктивной функции, участии в обмене белков и липидов, окислительных процессах, регуляции проницаемости мембран. Ретиналь выполняет роль зрительного пигмента. Кроме того, ретиноиды обладают антиопухолевой активностью и ослабляют действие канцерогенов. b-Каротин является антиоксидантом.

Витамин D (кальциферол). Кальциферол, как и витамин А, существует в нескольких формах. Важнейшие среди них – эргокальциферол (витамин D2) и холекальциферол (витамин D3). Структурная формула витамина D2 приведена на рис. 47, а витамина D3 ‑ на рис. 48.

Рис. 47. Структура витамина D2

Рис. 48. Структура витамина D3

Основные функции витамина D в организме связаны с обеспечением транспорта ионов кальция и фосфора через биомембраны. Причем, витамин D выполняет свои функции в форме образующихся из эрго- и холекальциферола активных метаболитов, важнейшим из которых является 1,25-дигидроксихолекальциферол (кальцитриол). Последний стимулирует всасывание кальция в желудочно-кишечном тракте и включение его в костную ткань.

Витамин Е (токоферол). Под этим названием объединяется группа соединений – производных токола. Наиболее распространены a-,(рис. 49), b- и g-токоферолы, которые различаются числом и положением метильных групп у бензольного кольца.

Рис. 49. Струтурная формула α-токоферола

Витамин Е обладает антиоксидантным действием, препятствуя процессам перекисного окисления полиненасыщенных жирных кислот в составе липидов клеточных мембран. Кроме того, токоферолы участвуют в регуляции синтеза ферментов, контролируют обмен и функции убихинона (кофермента Q) – одного из компонентов дыхательной цепи, а также являются синергистами селена.

Витамин F (эссенциальные жирные кислоты). Эссенциальными (незаменимыми) жирными кислотами называются жирные кислоты, которые не могут быть синтезированы в организме человека и животных в количествах, необходимых для их нормального роста и развития, и должны поступать с пищей. К ним относятся полиненасыщенные жирные кислоты, содержащие 18 атомов углерода – линолевая (С18 : 2) и a-линоленовая (С18 : 3).

Из линолевой и линоленовой кислот может образовываться арахидоновая кислота, которая служит предшественником большой группы медиаторов – эйкозаноидов. Последние участвуют в высвобождении веществ внутри-клеточного синтеза, контролируют сокращение гладкомышечной ткани, оказывают влияние на метаболизм костной ткани, нервную и иммунную системы и др. Следует отметить участие витамина F в регуляции обмена липидов, а также его роль в выведении из организма избыточных количеств холестерина. Структурные формулы вышеуказанных кислот представлены на рис. 50.

Рис. 50. Структурные формулы эссенциальных жирных кислот

Витамин K (филлохинон). Витамины этой группы являются производными 2-метил-1,4-нафтохинона и представлены филлохинонами (витамин K1) и менахинонами (витамин K2), отличающимися строением боковой цепи (рис. 51 ).

Рис. 51. Структурные формулы витаминов К1 и К2

Витамин K характеризуется антигеморрагической активностью, стимулируя биосинтез факторов свертывания крови. При этом филлохинон как кофактор карбоксилазы принимает участие в карбоксилировании остатков глутаминовой кислоты белков плазмы крови (протромбина и др.). Менахиноны функционируют в составе мембран, а также участвуют в окислительном фосфорилировании и фотофосфорилировании.

Читайте также:  Живика витамины с цинком

Витамин Q (убихинон). Относится к семейству хинонов, среди которых наиболее распространены убихиноны, называемые также коферментами Q. Они участвуют в процессах транспорта электронов при дыхании и фотосинтезе, а также проявляют антиоксидантное действие в мембранах, причем еще более эффективное, чем у токоферола. Структурная формула убихинонов приведена на рис. 52.

Рис. 52. Витамин Q (убихинон)

Тема 12. Введение в фармакологию. Фармакокинетика

Фармакология (от греч. pharmacon – лекарство, яд; logos – учение) –наука о взаимодействии лекарственных веществ и организма. Основными задачами фармакологии являются создание, и обоснование рационального применения новых лекарственных средств, и изучение новых свойств уже известных лекарственных препаратов. Термин «лекарство» является производным французского слова drogue (сухая трава), и под термином «лекарство» подразумевают любое вещество, которое может быть использовано с целью:

– облегчения или лечения заболеваний человека или животных;

По определению ВОЗ лекарственным является любое вещество или продукт, который может быть использован или используется для исследования изменения физиологических систем или патологических процессов с пользой для реципиента.

Фармакология –бурно прогрессирующая наука. Прогресс в области лекарствоведения и фармакологии в целом привел к тому, что в последнее время выделился и обособился ряд самостоятельных научных дисциплин и направлений. Синтез отдельных веществ, затем групп соединений создал предпосылки к выделению отдельных направлений лекарственной терапии и профилактики, таких, например, как радиационная фармакология, иммуно-фармакология, психофармакология, педиатрическая фармакология и др.

В целом же в настоящее время фармакология как базовая наука имеет четыре основных раздела:

4) токсикология лекарств (нежелательное действие лекарств).

Кроме того, фармакологию еще подразделяют на общую и частную. Если общая фармакология изучает общие закономерности взаимодействия лекарственных веществ с живыми организмами, то частная рассматривает конкретные фармакологические группы и отдельные препараты.

В обоих разделах особое внимание уделяется фармакодинамике и фармакокинетике лекарств, приводятся сведения о показаниях к их применению и возможных побочных эффектах.

Фармакокинетика (ФК) (от греч. pharmacon – лекарство, яд; kineo – двигать) – это один из основных разделов фармакологии, изучающий движение лекарств, а именно: в количественном плане описывает (характеризует) абсорбцию (всасывание), распределение, биотрансформацию и экскрецию (выведение) лекарственных средств из организма. Другими словами, ФК изучает пути прохождения и изменения лекарственных средств в организме, а также, что очень важно подчеркнуть, зависимость от этих процессов эффективности и переносимости препаратов. Фармакокинетика позволяет изучить динамику концентрации лекарственных средств в организме. Фармакокинетические исследования позволяют оценить процессы всасывания (абсорбции), распределения, связывания с белками, биотрансформации и выведения из организма лекарственных средств. Полученные в результате этих исследований данные создают ту качественную и количественную основу, с помощью которой можно прогнозировать степень попадания лекарственного вещества к месту его действия.

Фармакодинамика(ФД) – это раздел фармакологии, изучающий:

1) механизмы действия, т. е. сущность процессов взаимодействия с тканевыми, клеточными или субклеточными рецепторами – специфическими или неспецифическими;

2) фармакологические эффекты, т. е. содержание и изменение влияния препарата в зависимости от возраста, пола больного, характера и течения заболевания, сопутствующей патологии;

3) локализацию действия лекарств. Более коротко ФД можно определить как раздел фармакологии, изучающий действие лекарственных средств на организм.

Источник

Формулы витаминов. Витамины витамины

Название Витамины витамины
Анкор Формулы витаминов.doc
Дата 04.03.2017
Размер 227 Kb.
Формат файла
Имя файла Формулы витаминов.doc
Тип Документы
#3384

водорастворимые витамины

Подборка по базе: 3 Лаб раб Табл формулы граф объект.docx, ТАБЛИЦА ВИТАМИНЫ.docx, Оформление текстовых документов, содержащих таблицы и формулы.do, «Лекарства» для здоровых. Витамины. Ферменты..docx, 1 ФИТО Витамины и Полисахариды.pdf, СРО Витамины.docx, ОП.05 Вет. фармакология витамины.docx, Роль витаминов в организме..pdf, Крайнев фарм задачи витамины 322.docx, Задание 6. Рисование Формулы Ссылки.docx

Витамины – это необходимые для нормальной жизнедеятельности низкомолекулярные органические соединения, синтез которых у организмов данного вида отсутствует или ограничен.

Витамины и их производные являются активными участниками биохимических и физиологических процессов, протекающих в живых организмах (табл. 10).

В организмах млекопитающих большинство витаминов не синтезируется, а некоторые синтезируются кишечной микрофлорой или тканями в недостаточных количествах, поэтому витамины должны поступать с пищей. Некоторые микроорганизмы и высшие растения также нуждаются в определенных витаминах.

Особенности функционирования витаминов в живых организмах заключаются в следующем: 1) практически не синтезируются в организме; 2) источником витаминов служит пища и/или кишечные бактерии; 3) содержатся в организме в небольших количествах; 4) не входят в состав пластического материала организма и не используются в качестве источника энергии; 5) в большинстве случаев выполняют коферментные функции (табл. 11).

Для обозначения каждого витамина существует буквенное латинское обозначение (например, витамины группы В), химическое (например, никотиновая кислота) и физиологическое названия (например, витамин роста). Отдельные витамины могут быть представлены группой соединений, близких по химическому строению и проявляющих близкую биологическую активность, называемых витамерами (например, витамин А может быть представлен витамерами А1 и А2).

Классификация витаминов. По растворимости в воде и жирах витамины подразделяют на две группы: водорастворимые и жирорастворимые (табл. 10). В каждой из этих групп, наряду с витаминами, выделяют витаминоподобные соединения, выполняющие функции витаминов, но требующиеся организму в сравнительно больших количествах (табл. 12).

Суточная потребность в витаминах невелика, но при недостаточном или избыточном поступлении витаминов в организме наступают характерные и опасные патологические состояния: 1) авитаминоз – комплекс симптомов, развивающихся в организме в результате достаточно длительного полного или почти полного отсутствия одного или нескольких (полиавитаминоз) витаминов;2) гипо- и гипервитаминозы – болезни, вызванные, соответственно, недостаточным или избыточным поступлением витамина или нескольких витаминов (полигипо- и полигипервитаминозы).

Вещества, структурно подобные витаминам, которые при взаимодействии с апоферментом образуют неактивные формы ферментов, называются антивитаминами и находят применение в медицинской практике для лечения ряда заболеваний (например, сульфаниламидные препараты).
Биохимическая функция витаминов

Витамин А (ретинол)– зрительный процесс (регулирует рост и дифференцировку клеток)

Витамин Д (кальциферол)- обмен кальция и фосфора

Витамин Е (токоферол)- антиоксидант, транспорт электронов (защита мембранных липидов)

Витамин К (филлохинон)- перенос электронов (кофактор в реакциях карбоксилирования) участвует в активации факторов свертывания крови
Водорастворимые витамины

Витамин В 1 (тиамин)– декарбоксилирование α-кетокислот, перенос активного альдегида (транскетолаза)

Витамин В2 (рибофлавин)– дыхание, перенос водорода

Витамин РР (никотиновая кислота)- дыхание, перенос водорода

Витамин В6 (пиридоксин) – обмен аминокислот, перенос аминогрупп

Витамин В12 (кобаламин)– кофермент ряда метаболических реакций переноса алкильных групп, метилирование цистеина

Фолиевая кислота – транспорт одноуглеродных групп

Витамин В3 (пантотеновая кислота) – транспорт ацильных групп

Витамин Н (биотин) – кофермент реакций карбоксилирования (транспорт СО2)

Витамин С – антиоксидант, восстанавливающий кофактор для ряда оксигеназ, гидроксилирование пролина, лизина, катаболизм тирозина

Витамины: суточная потребность и источники поступления в организм человека

Название

буквенное обозначение , химическое и

физиологическое названия

Химическая формула Суточная потребность Источники поступления Проявления недостаточности витамина
жирорастворимые витамины
Витамин А

Антиксерофтальмический

1,5 – 2,5 мг Рыбий жир, печень рыб, птиц и животных, желток куриного яйца, сливочное масло, зелень, красно-мякотные овощи Куриная слепота
Витамин D

Антирахитический

0,04 мг Образуются в коже под действием УФ-света; рыбий жир, сливочное масло, молоко, печень, желток яйца Рахит, остеопороз
Витамин К

Антигеморрагический

2 мг Синтезируются кишечными бактериями; капуста, шпинат, фрукты, печень Кровотечения
-Витамин Е

Антистерильный

2 – 6 мг Растительные масла, зародыши пшеницы, салат, капуста, зерно Мышечная дистрофия, паралич
Витамин В1

Антиневритный

1,5 – 2,0 мг Хлеб, горох, фасоль, мясные продукты Бери-бери
Витамин В2

Витамин роста

2,0 – 2,5 мг Печень, желток яйца, творог, кишечные бактерии Себорейный дерматит
Витамин В3

Пантотеновая кислота

5 – 10 мг Синтезируется кишечной флорой; содержится во многих продуктах
Витамин В5 (РР)

Антипеллагрический

15 – 25 мг Синтезируется из триптофана, мясные и растительные продукты Пеллагра
Витамин В6

Антидерматитный

2 – 3 мг Кишечные бактерии; зерновые, бобовые и мясные продукты Дерматиты

Витамин В9с)

Фактор роста

0,1 – 0,5 мг Салат, капуста, томаты, шпинат, печень, мясо Макроцетарная анемия

Витамин В12

Антианемический

0,005 – 0,080 мг Синтезируются кишечными бактериями; продукты животного происхождения Злокачественная анемия

Витамин Н

Антисеборейный

0,15 – 0,3 мг Синтезируется кишечными бактериями; продукты растительного и животного происхождения Замедление роста, выпадение волос и т.д.
Витамин С

Антискорбутный

80 – 110 мг Фрукты (цитрусовые), ягоды (шиповник, смородина), овощи, молоко Цинга
Витамин Р

Капилляроукрепляющий

25 мг Фрукты, овощи, листья чая и плоды шиповника Ломкость сосудов

Химическое строение и биохимические функции некоторых коферментов – производных витаминов

Название Химическая формула Биохимические функции
1 2 3 4
1 Тиаминдифосфат (ТДФ) – производное витамина В1 (тиамин) Входит в состав пируватдегидрогеназного комплекса ферментов и транскетолазы, участвует в окислении пирувата, в биосинтезе жирных кислот, стероидов и других соединений.
2 Флавинмононуклеотид (ФМН) и флавинадениндинуклеотид (ФАД) – производные витамина В2 (рибофлавин) Являются простетическими группами флавопротеинов, катализирующих процессы переноса электронов и протонов в дыхательной цепи, окисления пирувата, жирных кислот и других соединений.
3 Кофермент А (коэнзим А, КоА) – производное витамина В3 (пантотеновая кислота) Участвует в реакциях активации и переноса ацильных остатков. Является высокоэнергетическим соединением.

4 Никотинамиддинуклеотид (НАД) и никотинамиддинуклеотидфосфат (НАДФ) – производные витамина В5 (никотиновая кислота) Являются коферментами дегидрогеназ. НАД-зависимые дегидрогеназы катализируют реакции окисления биосубстратов путем дегидрирования. НАДФ-зависимые дегидрогеназы катализируют одновременно с процессами дегидрирования реакции декарбоксилирования, при этом они не передают водород в дыхательную цепь.
5 Н4-фолат – производное витамина В9 (фолиевая кислота) Участвует в реакциях переноса одноуглеродных фрагментов, играет важную роль в биосинтезе пуриновых и пиримидиновых оснований, влияя тем самым на генетический аппарат клетки.
6 Карбоксибиотин – производное витамина Н (биотин) Биотинзависимые ферменты катализируют реакции β-карбокси-лирования и транскарбоксилирования карбоновых кислот, способствуя усвоению тканями организма гидрокарбонат-ионов.

Витаминоподобные вещества: химическое строение и биохимические функции

жирорастворимые витаминоподобные вещества

Название Химическое

строение

Пути поступления в организм Биохимические функции
1 2 3 4 5
1 Убихинон (коэнзим Q, KoQ) Синтезируется в организме из мевалоновой кислоты и продуктов обмена фенилаланина и тирозина. Широко распространен во всех клетках организма. Является основным компонентом дыхательной цепи; окисляет и восстанавливает многие биосубстраты; предотвращает свободнорадикальное окисление в организме.
2 Витамин F

линоленовая, арахидоновая кислоты)

СН3(СН2)4СН=СНСН2СН=СН(СН2)7СООН

Линолевая кислота (цис-цис-9,12-октадекадиеновая)

Линоленовая кислота (9,12,15-октадекатриеновая)

Источник

Про здоровье и витамины © 2022
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.

Adblock
detector