Меню

Все про витамины фармакология

Что такое витамины, и зачем они нужны?

Часто мы чувствуем усталость, недомогание, особенно в «переходный период», когда сменяются времена года. Организму не хватает витаминов и других полезных веществ и микроэлементов. Что же необходимо для отличного самочувствия и правильного функционирования организма?

Витамины и полезные вещества являются необходимыми составляющими для правильного функционирования организма. Человек состоит из множества мельчайших кирпичиков – клеток. Клетки эти имеют определенную структуру, отличаются в зависимости от расположения и предназначения.

Все вместе, они образуют ткани, например мышечная, нервная. Ткани образуют органы и системы органов. Взаимодействуя между собой, с помощью сложных биохимических реакций, образуют сложнейшую структуру – человеческий организм. И вот, как раз для правильного и долгого функционирования этой сложной биологической конструкции, необходимо поступление витаминов и полезных веществ извне.

Что же такое витамины и полезные вещества

Витамины — вещества органической природы, поступающие извне или синтезирующиеся в организме, участвуют в построении ферментов и гормонов, которые в свою очередь, исполняют роль регуляторов различных биохимических процессов.

К полезным веществам относятся микроэлементы, незаменимые аминокислоты и другие, жизненно необходимые субстанции, ежедневно поступающие в организм с пищей.

Микроэлементы, как и витамины — основа ферментов, специализированных клеток, гормонов. Незаменимые аминокислоты являются жизненно необходимым строительным материалом. Содержатся в животных белках.

Что же нам кушать и что же нам пить, чтобы всегда здоровыми быть

Важно не только включение в рацион пищи богатой витаминами, но и ее сбалансированный характер. Вкратце рассмотрим основные группы витаминов и содержащие их в продукты.

Витамин А – важен для зрения, нормального состояния кожи и волос. Наиболее богаты им печень и рыбий жир.

Витамины группы B – участвуют в энергетическом обмене. Содержаться в зерновых, крупах, мясе, дрожжах.

Витамин С – совместно с витаминами A и E предотвращают появление свободных радикалов. Он важен для соединительных тканей и усвоения железа. Больше всего богаты витамином C свежие овощи и фрукты.

Витамин D – может вырабатываться в организме человека самостоятельно, из холестерина в коже, под воздействием ультрафиолета.

Регулирует обмен фосфора и кальция. Богат данным витамином яичный желток, сливки, сливочное масло.

Витамин E – снижает риск тромбозов, важен для хорошего состояния кожи и развития мышц. Содержится в растительных маслах, шпинате, свекле, капусте.

Витамин K – способен в небольшом количестве образовываться в кишечнике, при помощи микроорганизмов. Важный компонент свертывающей системы, защищает печень и предстательную железу от рака. Наиболее богаты им свежие зеленые овощи, капуста, яйца.

Витамин P – антиоксидант, также защищает кровеносные сосуды от повреждений. Основной источник – ярко окрашенные овощи и фрукты, вино, зеленый чай.

Как относиться к поливитаминным комплексам, и кому они необходимы

Существует огромное количество разнообразных препаратов, способных удовлетворить потребность в витаминах и полезных веществах на сутки всего одной таблеткой. Поливитаминные комплексы показаны детям, беременным женщинам, длительно болеющим людям. Также, для профилактики авитаминоза, в осенне-весенний период всем остальным.

Таким образом, витамины и полезные вещества можно получить как из продуктов питания, так и с помощью специальных сбалансированных поливитаминных комплексов.

Перед покупкой и использованием витаминного комплекса нужно проконсультироваться с врачом. За депрессией и утомляемостью, которые расцениваются как авитаминоз, могут скрываться совершенно другие проблемы.

Введите e-mail, чтобы подписаться на нашу рассылку

Источник

ВИТАМИННЫЕ ПРЕПАРАТЫ

ВИТАМИННЫЕ ПРЕПАРАТЫ — лекарственные средства, содержащие различные витамины и группы витаминов в определенных соотношениях.

В. п. получают гл. обр. синтетическим путем; некоторые изготовляют из растительного и животного сырья — печени морских рыб и крупного рогатого скота, из плодов шиповника, листьев чайного растения, плодов аронии черноплодной, облепихи и др.

Существуют препараты ретинола, тиамина, рибофлавина, никотиновой к-ты, пантотената кальция, пиридоксина, фолиевой к-ты, цианокобаламина, аскорбиновой к-ты, флавоноидов, кальциферола, токоферола, филлохинонов, пангамата кальция, холина, липоевой к-ты, оротовой к-ты, линетола, линола и др. Наряду с нативными формами отдельных витаминов выпускают их коферментные соединения: кокарбоксилазу (см.), рибофлавин-мононуклеотид, кобамид (кофермент цианокобаламина) и др.

В. п. могут содержать два витаминных фактора: напр., витамины А и E (аевит); аскорбиновую к-ту и рутин (аскорутин); аскорбиновую и галловую кислоты (Галаскорбин). При подборе сочетания витаминов учитывают не только биол, и фармакол. свойства каждого витамина в отдельности, но и их физиол, взаимосвязи, возможность синергического или антагонистического действия.

Удобной лекарственной формой для использования как с профилактической, так и леч. целью являются поливитамины, различающиеся по набору и количественному содержанию входящих в их состав витаминов. Среди них имеются препараты, содержащие три витамина (тиамин, никотиновая к-та и аскорбиновая к-та), четыре витамина (ретинол, тиамин, рибофлавин, аскорбиновая к-та; тиамин, рибофлавин, фолиевая к-та, никотинамид; тиамин, рибофлавин, никотиновая к-та и аскорбиновая к-та), пять витаминов (ретинол, тиамин, рибофлавин, никотинамид, аскорбиновая к-та; тиамин, рибофлавин, аскорбиновая к-та, рутин, никотинамид; тиамин, рибофлавин, пиридоксин, аскорбиновая к-та, никотинамид), шесть витаминов (ретинол, тиамин, рибофлавин, никотинамид, пиридоксин, аскорбиновая к-та; ретинол, тиамин, рибофлавин, никотинамид, пантотенат кальция, пиридоксин) и т. д. К поливитаминам относятся также препараты для беременных и кормящих женщин (гендевит) и гериатрические (ундевит и декамевит).

Читайте также:  Какие таблетки содержат витамин в12

В. п. широко используют как в профилактических целях (для предупреждения возможных гиповитаминозов, повышения устойчивости организма к инфекционным заболеваниям, уменьшения отрицательного влияния различных проф. вредностей и других факторов окружающей среды, неблагоприятно действующих на организм), так и в качестве леч. средств при экзогенных, или первичных, гипо- и авитаминозах, вызванных гл. обр. недостаточностью витаминов в пище, а также при эндогенных, или вторичных, гипо- и авитаминозах, наблюдающихся при нарушении усвоения и использования витаминов клетками организма, болезнях обмена, эндокринной системы, различных острых и хрон, инфекционных заболеваниях, гнойных и септических процессах, инвазии кишечными паразитами и др. (см. Витаминная недостаточность). В. п. обладают также неспецифическими фармакол. свойствами. Напр., никотиновая к-та вызывает сосудорасширяющий и гипохолестеринемический эффекты. В. п. оказывают влияние на различные стороны обмена веществ и могут служить дополнением к специфически действующим лекарственным средствам. Они усиливают терапевтическую активность лекарственных средств, устраняют побочное действие некоторых из них, в частности антибиотиков.

Фармакодинамика, конкретные показания и противопоказания к назначению В. п.— см. в статьях об отдельных витаминах (напр., Пангамовая кислота, Пантотеновая кислота, Ретинол, Рибофлавин, Токоферолы, Филлохиноны и др.).

При необоснованном использовании больших доз В. п. могут оказать токсическое действие на организм и вызвать явления гипервитаминоза (см.). При этом необходимо прекратить введение препарата. При назначении В. п. в качестве леч. средств необходимо учитывать функциональное состояние печени и почек.

Библиография: Витамины и витаминные препараты, под ред. В. А. Яковлева, М., 1973, библиогр.; Шилов П. И. и Яковлев T. Н. Основы клинической витаминологии, Л., 1974, библиогр.

Источник

Лекции № 20, 21

Лекарственные средства, влияющие на обмен

Веществ в организме.

Витамины и антивитаминные средства

витамины– это жизненно необходимые и незаменимые органические вещества разнообразной химической структуры, практически не синтезируемые в организме, но необходимые для регуляции обмена веществ. Большинство витаминов поступают с пищей, некоторые образуются в организме (D3 в коже при воздействии УФ лучей,никотинамид из триптофана, витамин Kи витамины группыBсинтезируются кишечной микрофлорой). Большинство витаминов входит в состав коферментов, которые вместе с апоферментами образуют ферменты, участвующие в углеводном, жировом, белковом и минеральном обменах, регулируют окислительно-восстановительные процессы. Витамины являются регуляторами функции клеточных мембран.

Недостаточное поступление витаминов в организм в результате неправильного питания (мало фруктов, овощей, белков).

Патология органов пищеварения:

Дисбактериоз. Кишечная микрофлора синтезирует витамины K, В1, В2, В6, В12 и Вс.

Дисфункции желчных путей и недостаток желчи нарушают всасывание жирорастворимых витаминов А, Д, Е, К.

Замедляется всасывание витаминов при дисфункциях ЖКТ: диарее, гастритах, колитах, энтеритах.

Наследственные нарушения обмена витаминов.

Недостаточное образование активных метаболитов некоторых витаминов.

Повышение потребности в витаминах (спорт, период интенсивного роста, умственная нагрузка, инфекционные заболевания, беременность, лактация).

Применение антивитаминов, то есть веществ, которые подавляют эффекты витаминов. По механизму действия антивитамины делятся на

разрушающие витамины: хлорпромазин – В1; хинин – В2; варфарин – К;

конкурирующие с витаминами: антифоланты (метотрексат) – Вс, СА – ПАБК.

Классификация витаминов

а) влияющие на углеводный обмен и обмен ацетилхолина: В1, холин

б) влияющие на окислительно-восстановительные процессы: В2, С, Р, РР

в) влияющие на нуклеиновый и белковый обмен: В6, В12 и Вс

Принципы витаминотерапии

Витамины – средства профилактической терапии, они предупреждают развитие заболеваний, связанных с гипо- и авитаминозами.

Лечебное назначение витаминов нужно проводить на основе симптомов заболевания, сходных с симптомами гиповитаминоза.

Вместе с витамином принимаются субстраты его действия: Д + Са, В12и Вс, В1и метионин.

Полноценное белковое питание.

При лечении витаминами учитывается степень дифференцировки тканей больного.

При лечении соответствующих заболеваний в пищу надо обязательно включать продукты, содержащие витамины. Часто они более эффективны, так как биологизированы, содержат витамины – синергисты.

В тяжелых случаях витаминной патологии более эффективно парентеральное введение витаминов.

Витамины назначаются строго по показаниям.

При применении витаминов нужно учитывать их взаимодействие между собой и другими лекарствами.

Часто целесообразно комплексное назначение витаминов.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Источник

ВИТАМИНЫ

ВИТАМИНЫ (лат. vita жизнь + амин[ы]) — пищевые вещества, необходимые для поддержания жизненных функций. По строению являются низкомолекулярными соединениями различной хим. природы. Организм человека и животных не синтезирует В. или синтезирует в недостаточном количестве и поэтому должен получать их в готовом виде. В. требуются организму от нескольких микрограммов до нескольких миллиграммов в день (см. табл.). В отличие от других незаменимых факторов питания (незаменимые аминокислоты, ненасыщенные жирные кислоты и др.), В. не являются пластическим материалом или источником энергии и участвуют в обмене веществ преимущественно не как субстраты биохим, реакций, а как участники механизмов биокатализа и регуляции отдельных биохим, и физиол, процессов.

Недостаток В. в пище или изменение процессов их усвоения приводит к нарушениям обмена веществ и в конечном счете к развитию гипо- и авитаминозов (см. Витаминная недостаточность).

Читайте также:  Для чего полезен коллаген с витамином с

Открытие В. тесно связано с изучением роли отдельных пищевых веществ в обеспечении полноценного питания. Во второй половине 19 в. считалось, что для нормального функционирования организма достаточно определенного содержания в пище белков, жиров, углеводов, минеральных солей и воды.

В 1880 г. русский исследователь Н. И. Лунин установил, что в пищевых продуктах имеются еще неизвестные факторы питания, необходимые для жизни. Он показал, что белые мыши, получавшие цельное молоко, росли хорошо и были здоровы, но погибали, когда их кормили смесью из основных составных частей молока: казеина, жира, молочного сахара, солей и воды. Выводы Н. И. Лунина были в дальнейшем подтверждены С. А. Сосиным (1891), а в 1906 — 1912 гг. Ф. Гопкинсом.

В 1897 г. голл. врач Эйкман (Ch. Eijkman) установил, что у кур, получавших в пищу полированный рис, развивалось сходное с бери-бери заболевание, однако они выздоравливали после того, как им давались рисовые отруби.

По предложению польского ученого К. Функа (1911 — 1912), работавшего над выделением активного начала рисовых отрубей и обнаружившего наличие в них аминогруппы, все вещества подобного рода стали называть витаминами («жизненными аминами»).

Известно около двух десятков веществ, которые могут быть отнесены к В. Принято различать водорастворимые и жирорастворимые В. К первым относятся аскорбиновая к-та (витамин С), а также витамины группы В.: тиамин (витамин B1), рибофлавин (витамин В2), пиридоксин (витамин B6), кобаламины (витамин B12), ниацин (витамин PP, никотиновая к-та), фолацин (фолиевая к-та), пантотеновая к-та и биотин. К жирорастворимым В. относят ретинол (витамин А), кальциферолы (витамин D), токоферолы (витамин Е) и филлохиноны (витамин К). Наряду с В., необходимость которых для человека и животных бесспорно установлена, а дефицит приводит к явлениям витаминной недостаточности, имеются и другие биологически активные вещества, функции которых носят не столь специфический характер. Эти вещества могут быть причислены к витаминоподобным соединениям. К ним обычно относят биофлавоноиды, холин, инозит, липоевую, оротовую, пангамовую и парааминобензойную кислоты. Парааминобензойная к-та является фактором роста для некоторых микроорганизмов, синтезирующих из нее фолиевую к-ту. Для человека и животных парааминобензойная к-та биологически неактивна, т. к. они не способны превращать ее в фолиевую к-ту.

Целый ряд В. представлен не одним, а несколькими соединениями, обладающими сходной биол, активностью. Примером может служить группа витамина B6, включающая пиридоксин, пиридоксаль и пиридоксамин. Для обозначения подобных групп родственных соединений в соответствии с рекомендациями Международного союза специалистов по питанию (1969) используются буквенные обозначения (витамины A, D и т. п.). Для обозначения индивидуальных соединений, обладающих витаминной активностью, рекомендуется давать рациональные названия, отражающие их хим. сущность, напр, ретиналь (альдегидная форма витамина А), эргокальциферол и холекальциферол (формы витамина D). Хим. строение известных В. полностью установлено, большинство из них получено путем хим. синтеза. Химический, а также микробиол, синтез является основой современного промышленного производства большинства В.

Кроме В., известны провитамины— соединения, которые, не являясь витаминами, могут служить предшественниками их образования в организме. К ним относятся каротины, расщепляющиеся в организме с образованием ретинола (витамина А), некоторые стерины (эргостерин, 7-дегидрохоле стерин и др.), превращающиеся в витамин D.

Некоторые производные В. с замещенными функциональными группами оказывают на организм противоположное по сравнению с В. действие, т. е. являются антивитаминами. Проникая в клетки, эти вещества вступают в конкурентные отношения с В., в частности при биосинтезе коферментов и образовании активных ферментов. Заняв место В. в структуре фермента, антивитамины вследствие различий в строении не могут выполнять их функции. К антивитаминам относят также вещества, связывающие или разрушающие В. (см. Авидин, Тиаминаза). Ряд антивитаминов обладает антимикробной активностью и применяется в качестве химиотерапевтических средств, как, напр., сульфаниламидные препараты.

Специфическая функция витаминов группы В в организме состоит в том, что из них образуются коферменты (см.) и простетические группы ферментов, осуществляющие многие важнейшие реакции обмена веществ. Так, тиамин (витамин В1) превращается в организме в тиамин-дифосфат (кокарбоксилаза), являющийся коферментом энзиматических систем, осуществляющих окислительное декарбоксилирование α-кетокислот.

Связанные с различными В. ферменты принимают участие в осуществлении многих важнейших процессов обмена веществ: энергетическом обмене (витамины B1 и B2), биосинтезе и превращениях аминокислот (витамины B6 и B12), жирных кислот (пантотеновая к-та), пуриновых и пиримидиновых оснований (фолиевая к-та), образовании многих физиологически важных соединений (ацетилхолина, стероидов) и др. Коферменты и простетические группы, а тем более соответствующие В., сами по себе каталитической активностью не обладают и приобретают ее лишь при взаимодействии со специфическими белками — апоферментами.

Введение В., в т. ч. в повышенных дозах, не может нормализовать скорость связанной с ним биохимической реакции, если она снижена не из-за недостатка этого В., а в силу каких-либо иных нарушений. С этой точки зрения использование В. в мед. практике в дозировках, значительно превышающих физиол, потребность, не всегда может быть оправдано, а в ряде случаев и небезопасно, поскольку оно может вести к нарушению обмена веществ и гипервитаминозам (см.).

Читайте также:  Витамины когда сломал руку

В отличие от витаминов группы В, жирорастворимые витамины ретинол, кальциферолы, токоферолы и филлохиноны, а также аскорбиновая к-та не являются предшественниками коферментов или простетических групп. Функции этих В. различны и связаны с осуществлением процессов фоторецепции (витамин А), свертывания крови (витамин К), всасывания кальция (витамин D).

Необходимым условием реализации специфических функций В. в обмене веществ является нормальное осуществление их собственного обмена: всасывания в кишечнике, транспорта в ткани, превращения в активные формы. Всасывание и перенос В. кровью осуществляются, как правило, с помощью специальных транспортных белков (ретиносвязывающий белок для ретинола, транскобаламины I и II для витамина B12 и т. д.). Превращение В. в активные формы, в частности в коферменты и простетические группы, а также присоединение этих простетических групп к апоферментам осуществляются с помощью специфических ферментов. Так, пиридоксалькиназа катализирует превращение пиридоксаля (одной из форм витамина B6) в его коферментную форму — пиридоксальфосфат. Тиаминпирофосфокиназа осуществляет превращение тиамина в тиаминдифосфат. Нарушение одного из этих процессов, напр., при врожденном или приобретенном дефекте биосинтеза одного из специфических белков, участвующих в обмене того или иного В., делает невозможным выполнение В. своих специфических функций, что ведет к развитию частичной или полной витаминной недостаточности. Примером таких нарушений может служить анемия, развивающаяся при врожденном дефекте всасывания фолиевой к-ты в кишечнике или при генетическом дефекте дигидрофолатредуктазы, превращающей фолиевую к-ту в ее коферментную форму — тетрагидрофолиевую к-ту. Наряду с превращением в активные формы В. подвергаются в организме катаболическим превращениям с образованием неактивных форм, в виде которых они могут выводиться из организма (4-пиридоксиновая к-та из пиридоксина, N1-метилникотинамид из никотин амида и др.).

Недостаточное поступление В. в организм или нарушение их превращения можно определять путем исследования витаминного статуса человека. С этой целью определяют содержание В. и продуктов их обмена в крови, моче, активность ферментов, в состав которых в виде кофермента или простетической группы входит данный В., а также другие биохим, и физиол, показатели, характеризующие специфические функции В.

Методы определения витаминов приведены в статьях, посвященных отдельным витаминам (напр., Аскорбиновая кислота, Ретинол, Тиамин и др.). Применяется также и радиоизотопный метод (см. Витаминная недостаточность, радиоизотопная диагностика).

При помощи гистохимических методов можно выявить наличие в тканях ретинола, рибофлавина и аскорбиновой к-ты.

Определение аскорбиновой к-ты основано на свойстве ее в темноте и на холоду восстанавливать кислые растворы азотнокислого серебра. Существуют различные модификации методов, основанные на обработке кислыми растворами азотнокислого серебра нефиксированных тканевых блоков или свежих замороженных срезов. Предложен также метод обработки лиофилизированных срезов. Однако некоторые исследователи [Даниэлли (J.F. Danielli), Кисель (G. Kiszely) и др.] ставят под сомнение специфичность методов в целом в связи со способностью витамина С к диффузии и, возможно, наличием в тканях других сильных восстановителей серебра. Так, Клара (М. Clara), хотя и считает эти методы пригодными для выявления аскорбиновой к-ты, однако указывает на свойство гранул α-клеток островков поджелудочной железы, вещества энтерохромаффинных клеток, адренохрома, меланинов, нейросекреторных гранул супраоптических и паравентрикулярных ядер гипоталамуса также восстанавливать кислые растворы серебра.

Наибольшей популярностью пользуется метод Бурна (G. Н. Bourne) и метод Жиру (A. Giroud) и Леблона (С. P. Leblond).

Метод Жиру и Леблона позволяет получить тонкие парафиновые срезы, удобные для изучения. Свежий тканевый блок размером 2x3x2 мм помещают на 30—40 мин. в 10% раствор азотнокислого серебра, подкисленного концентрированной уксусной к-той до pH 3,0—4,0; затем раствор сливают и кусочки ткани промывают несколько раз дистиллированной водой и на 30 мин. помещают в 6% раствор гипосульфита натрия, после чего тканевые блоки обезвоживают спиртами восходящей концентрации и по обычной схеме заключают в парафин. Все процедуры, за исключением заливки в парафин, проводят в темноте. Полученные парафиновые срезы слегка подкрашивают смесью метилового зеленого и пиронина. Участки локализации аскорбиновой к-ты имеют вид мелких черных гранул.

Определение рибофлавина основано на восстановлении его водородом (в момент образования) до лейкофлавина, который на воздухе окисляется до родофлавина, имеющего красный цвет. Ткань фиксируют формалином и проводят реакцию на замороженных срезах. Срезы помещают на 30 мин. в 1—2% раствор соляной к-ты, в к-рую добавляют цинковую пыль; затем их промывают в воде и в течение нескольких часов выдерживают в чашке Петри или на часовом стекле на воздухе и заключают в глицерин-желатину. Флавопротеины окрашиваются в красный цвет.

Выявление витамина А основано на его свойстве давать яркую зеленую флюоресценцию в ультрафиолетовых лучах с длиной волны 365 нм. Свежие тонкие тканевые блоки фиксируют 10% раствором холодного формалина не более чем на 10—12 час. Затем немедленно готовят замороженные срезы, которые изучают в воде. Свечение исчезает через 10—60 сек. (следует иметь в виду, что стойкое свечение обусловлено не витамином А). Для контроля срезы обрабатывают раствором соляной к-ты.

Источник

Adblock
detector