Биотехнология витаминов
Автор работы: Пользователь скрыл имя, 20 Декабря 2013 в 10:19, курсовая работа
Краткое описание
Биологические технологии (биотехнологии) обеспечивают управляемое получение полезных продуктов для различных сфер человеческой деятельности. Эти технологии базируются на использовании каталитического потенциала различных биологических агентов и систем – микроорганизмов, вирусов, растительных и животных клеток и тканей, а также внеклеточных веществ и компонентов клеток. В настоящее время разработка и освоение биотехнологии занимают важное место в деятельности практически всех стран.
Содержание
Прикрепленные файлы: 1 файл
Курсовая по битехе.doc
Государственное образовательное учреждение
Высшего профессионального образования
«Пермская государственная фармацевтическая академия Федерального агентства по здравоохранению и социальному развитию»
Кафедра промышленной технологии с курсом биотехнологии
КУРСОВАЯ РАБОТА ПО БИОТЕХНОЛОГИИ
Выполнила: Скворцова К. М.
Преподаватель: Соснина О. Ю.
Применение их в различных областях.
Биологические технологии (биотехнологии) обеспечивают управляемое получение полезных продуктов для различных сфер человеческой деятельности. Эти технологии базируются на использовании каталитического потенциала различных биологических агентов и систем – микроорганизмов, вирусов, растительных и животных клеток и тканей, а также внеклеточных веществ и компонентов клеток. В настоящее время разработка и освоение биотехнологии занимают важное место в деятельности практически всех стран. Определить сегодня, что же такое биотехнология, весьма не просто. Вместе с тем, само появление этого термина в нашем словаре глубоко символично. Оно отражает мнение, что применение биотехнологических материалов и принципов в ближайшие годы радикально изменит многие отрасли промышленности и само человеческое общество. Интерес к этой науке и темпы ее развития в последние годы растут очень быстро.
Витамины. Применение их в различных областях. Пути производства.
Витамины – это низкомолекулярные органические вещества, необходимые любому организму в ничтожных концентрациях и выполняющих в нём каталитические и регуляторные функции. Недостаток того или иного витамина нарушает обмен веществ и нормальные процессы жизнедеятельности организма, приводя к развитию патологических состояний. Природным источником многих витаминов являются растения и микроорганизмы. Необходимость крупномасштабного производства витаминов определяется широкой областью их применения.
- Сельское хозяйство – витаминны е концентраты для повышения прод уктивности животноводства.
- Пищевая промышленность – добавки для повышения полноценности продуктов питания.
- Здравоохранение и медицина – как лечебно-профилактические средства в индивидуальном виде и в виде комбинированных препаратов.
В настоящее время в производстве многих витаминов ведущие позиции принадлежат химическому синтезу, однако при производстве отдельных витаминов микробный синтез имеет огромное значение, например при производстве кормовых препаратов витаминов. Отдельные витамины, кобаламины, менахиноны продуцируются только микробными клетками. Витамины принимают активное участие во многих процессах метаболизма человека и высших животных (процессы цикла трикарбоновых кислот, распад и синтез жирных кислот, синтез аминокислот и др.), оказывая влияние на разнообразные физиологические процессы.
Микробиологическим путем получают некоторые витамины группы B, а также эргостерин и каротин, являющиеся, соответственно, предшественниками витаминов D2 и провитамина A.
- Экстракция витаминных препаратов из растительного или из животного сырья. Именно этим путём были получены первые витаминные препараты. В настоящее время доля витаминов, получаемых этим путём, незначительно в виду малого содержания их в природном сырье.
- Химический синтез. Самый распространённый путь получения на данный момент.
- Биосинтез витаминов. Витамины, химический синтез которых невозможен в крупномасштабном производстве или нецелесообразен, получают с применением микроорганизмов, способных к сверхсинтезу и накоплению определённых витаминов.
Витамин В12 – (α-5,6-диметилбензимидазол)- цианкобаламин – полимер сложного строения, являющийся гематопоэтическим и ростовым фактором для многих животных и микроорганизмов. Микробиологический синтез является единственным способом получения данного витамина.
Способность к синтезу данного витамина широко распространена среди прокариотических микроорганизмов. Активно продуцируют витамин В12 Propionibacterium, а также Pseudomonas и смешанные культуры матанообразующих бактерий. Получение витамина на основе пропионовокислых бактерий, способных к самостоятельному синтезу аденозилкобаламина 5,6 ДМБ (коэнзима В12), осуществляется в две стадии в двух последовательных аппаратах объемом 500 л при коэффициенте заполнения 0.65–0.70.
Первую стадию культивирования проводят в течение 80 ч и слабом перемешивании в анаэробных условиях до полной утилизации сахара; полученную биомассу центрифугируют. Сгущенную суспензию инкубируют во втором аппарате еще в течение 88 ч, аэрируя культуру воздухом (2 м3/ч). Среда содержит сахара (обычно глюкозу 1–10 %), добавки солей железа, марганца, магния и кобальта (10–100 мг/л), кукурузный экстракт (3–7 %). В качестве источника азота принят (NH4)2SO4. Ферментацию проводят при 30°С, рН стабилизируют на уровне 6.5–7.0 подтитровкой культуры раствором (NH)4OH. На второй стадии происходит образование ДМБ. После завершения ферментации витамин экстрагируют из клеток, нагреванием в течение 10–30 минут при 80–120°С. При последующей обработке горячей клеточной суспензии цианидом происходит образование CN-кобаламина; продукт сорбируют, пропуская раствор через активированный уголь и окислы алюминия; затем элюируют водным спиртом или хлороформом. После выпаривания растворителя получают кристаллический витамин. Выход В12 составляет до 40 мг/л.
Активными продуцентами В12 являются бактерии рода Pseudomonas. Разработаны эффективные технологии на основе термофильных бацилл Bacillus circulans, в течение 18 ч при 65–75°С в нестерильных условиях. Выход витамина составляет от 2.0 до 6.0 мг/л. Бактерии выращивают на богатых средах, приготовленных на основе соевой и рыбной муки, мясного и кукурузного экстракта. Продукция В12 для медицины составляет около 12 т/г; форма выпуска – стерильный раствор CN-В12 на основе 0.95-го раствора NaCl и таблетки витамина в смеси с фолиевой кислотой или другими витаминами. Для нужд животноводства витамин В12 получают на основе смешанной ассоциации термофильных метаногенных бактерий. Ассоциация состоит из 4-х культур, взаимосвязанно расщепляющих органический субстрат до СО2 и СН4: углеводсбраживающих, аммонифицирующих, сульфатвосстанавливающих и собственно метанобразующих бактерий. В качестве субстрата используют декантированную ацетонобутиловую барду, содержащую 2.0–2.5 % сухих веществ. Брожение проходит при 55–57°С в нестерильной культуре в две фазы: на первой образуются жирные кислоты и метан, на второй – метан, углекислота и витамин В12. Длительность процесса в одном аппарате составляет 2.5–3.5 суток, в двух последовательных – 2–2.5 суток. Концентрация витамина в бражке достигает 850 мкг/л. Параллельно в значительных количествах, до 20 м3/м3 образуется газ (65 % метана и 30 % углекислоты). Бражка имеет слабощелочную реакцию. Для стабилизации витамина ее подкисляют соляной или фосфорной кислотой, затем в выпарном аппарате сгущают до 20 % содержания сухих веществ и высушивают в распылительной сушилке. Содержание В12 в сухом препарате – до 100 мкг/г.
Эргостерин – (эргоста-5,7,22-триен-3β-ол) – исходный продукт производства витамина D2 и кормовых препаратов дрожжей, обогащенных этим витамином. Витамин D2 (эргокальциферол) образуется при облучении ультрафиолетом эргостерина, который в значительных количествах синтезируют бурые водоросли, дрожжи, плесневые грибы. Наиболее активные продуценты эргостерина – Saccharomyces, Rhodotoryla, Candida.
В промышленных масштабах эргостерин получают при культивировании дрожжей и мицелиальных грибов на средах с избытком сахаров при дефиците азота, высокой температуре и хорошей аэрации. Более интенсивно эргостерин образуют дрожжи рода Candida на средах с углеводородами. При получении кристаллического препарата витамина D2 культивируют плесневые грибы (Penicillium, Aspergillus). Для получения кормовых препаратов облучают суспензию или сухие дрожжи (Candida). Облучают тонкий слой 5 % суспензии дрожжей ультрафиолетовыми лампами с длиной волны 280–300 нм. Кормовые препараты дрожжей содержат в 1 г АСВ 5000 Е витамина D2 и не менее 46 % сырого белка. Для получения кристаллического препарата витамина дрожжи или грибной мицелий подвергают кислотному гидролизу при 110°С. Витамин экстрагируют спиртом, фильтруют, далее фильтрат упаривают, несколько раз промывают спиртом. Спиртовый экстракт сгущают до 50 % концентрации сухих веществ, омыляют щелочью. Полученные кристаллы витамина очищают перекристаллизацией и сушат в эфире, отгоняя последний. Кристаллический осадок растворяют в масле. Данный препарат используют в медицинских целях. Эргостерин является также исходным продуктом для получения ряда стероидных гормонов, пищевых и лекарственных препаратов.
Каротиноиды — это изопреноидные соединения, синтезирующиеся многими пигментными микроорганизмами из рода Aleuria, Blakesloa, Corynebacterium, Flexibacter, Fusarium, Halobacterium, Phycomyces, Pseudornonas, Rhodotorula, Saicina, Sporobolomyces и др. Всего описано около 500 каротиноидов.
Из одной молекулы β-каротина при гидролизе образуются две молекулы витамина А,. Это имеет место, например, в кишечнике человека.
Каротиноиды локализуются в виде сложных эфиров и гликозидов в клеточной мембране микроорганизмов, либо в свободном состоянии — в липидных гранулах в цитоплазме. Каротиноид «ретиналь», например, у галофильного вида — Halobacterium halobium — соединен с белком через остаток лизина (опсиноподобный белок); оп участвует в синтезе АТФ благодаря генерации трансмембранного потенциала. В целом, основная функция каротиноидов — защитная. Их биосинтезу в клетках способствует свет.
В качестве продуцентов каротиноидов можно использовать бактерии, дрожжи, мицелиальные грибы. Более часто применяют зигомицеты Blakeslea trispora и Choanephora conjuncta. Спаривающиеся (+) и (-) особи этих видов при совместном культивировании могут образовать 3-4 г каротина на 1 л среды.
Питательные среды для них достаточно сложные и включают источники углерода, азота, витаминов, микроэлемент ов, специальных стимуляторов (гидрол, кукурузно-соевая мука, растительные масла, керосин, р-ионон или изопреновые димеры, и пр.). Стимуляторы целесообразно вносить в культуральные среды в конце трофофазы, то есть когда продуцент переходит в продуктивную фазу (идиофазу).
Вначале штаммы выращивают раздельно, а затем — совместно при 26°С и усиленной аэрации с последующим переносом в основной ферментатор. Условия культивирования сохраняют прежними. Длительность ферментации — 6-7 дней. Каротиноиды извлекают ацетоном (можно каким-либо другим полярным растворителем), переводят в неполярный растворитель. В случаях извлечения белково-каротиноидных комплексов, то применяют поверхностно-активные вещества в концентрации 1—2%. В целях очистки и более тонкого разделения гомологов можно прибегать к методам хроматографии или к смене растворителей. Витамин A1 из β-каротина сравнительно легко можно получить при гидролизе. В случае изготовления каротинсодержашей биомассы для скармливания животным и птицам возможно ее сочетанное применение с витамином А или без него. В медицинских целях витамин А изготавливают в капсулах для приема через рот.
Аскорбиновая кислота, или витамин С — это противоцинготный витамин, имеющийся у всех высших растений и животных; только человек и микробы не синтезируют ее, но людям она неотложно необходима, а микробы не нуждаются в ней. И, тем не менее, определенные виды уксуснокислых бактерий причастны к биосинтезу полупродукта этой кислоты — L-сорбозы. Таким образом, весь процесс получения аскорбиновой кислоты является смешанным, то есть химико-ферментативным.
Биологическая стадия процесса катализируется мембраносвязанной полиолдегидрогеназой, а последняя (химическая) включает последовательно следующие этапы; конденсация сорбозы с диацетоном и получение диацетон — L-сорбозы, окисление диацетон — L-сорбозы до диацетон-2-кето-1,-гулоновой кислоты, подвергаемой затем гидролизу с получением 2-кето-Ь-гулоновой кислоты; последнюю подвергают энолизации с последующей трасформацией в L-аскорбиновую кислоту.
Источник
Презентация «Производство витаминов методами биотехнологии» – проект, доклад
Презентацию на тему «Производство витаминов методами биотехнологии» можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Разные. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад — нажмите на соответствующий текст под плеером. Презентация содержит 14 слайд(ов).
Слайды презентации
Производство витаминов методами биотехнологии
Подготовила: Спирина А.А. 544 гр.
Витамины (от лат. vita – жизнь + амины) – низкомолекулярные органические соединения различной химической природы, абсолютно необходимые для нормальной жизнедеятельности организмов. Витамины являются незаменимыми пищевыми веществами, т.к. за исключением никотиновой кислоты они не синтезируются организмом человека и поступают главным образом в составе продуктов питания.
Роль витаминов в организме 1. Участие в обменных процессах 2. Входят в состав сложных ферментных систем. 3. Способствуют нормальному росту клеток и развитию всего организма. 4. Поддерживают иммунные реакции организма. 5. Смягчают или устраняют неблагоприятное действие на организм человека многих лекарственных препаратов. 6. Оказывают влияние на состояние отдельных органов и тканей, а также на важнейшие функции: рост, продолжение рода, интеллектуальные и физические возможности, защитные функции организма. Длительный недостаток витаминов ведет сначала к снижению трудоспособности, затем к ухудшению здоровья, а в самых крайних, тяжелых случаях это может закончиться смертью.
Содержание витаминов в пищевых продуктах
Получение витаминов в биотехнологии
Биотехнологическим путем получают некоторые витамины. Наибольшее значение имеет биотехнологическое производство витаминов В2, В12 и С, а также в-каротина (провитамина А). Для их получения используют различные бактерии, дрожжевые и плесневые грибы. В зависимости от вида микроорганизма и витамина питательной средой могут служить кукурузно-соевая мука, растительные масла, керосин, метанол, глюкоза, сахароза.
Витамин В2(рибофлавин) — азотистое основание: 6,7-диметилизоаллоксазин, соединенное с остатком спирта D-рибита. Рибофлавин содержится в клетках различных микроорганизмов, будучи коферментом в составе флавопротеинов. Посевной материал — споры Eremothicum ashbyii, выращенные на пшене. Культивирование продуцентов рибофлавина проводят при 28 – 30 °С в течение 72 ч. Через каждые 8 ч по мере осуществления процесса ферментации отбирают пробы для контроля за развитием микробных клеток, составом среды и накоплением целевого продукта. Полученная культуральная жидкость по окончании ферментации содержит 1,4 мг/мл рибофлавина. В целях стабилизации витамина в процессе высушивания культуральная жидкость подкисляется соляной кислотой до рН 4.5 – 5, после чего она концентрируется в вакуум-выпарной установке, производят дополнительную очистку на ионообменной установке; элюат выпаривают и полученный концентрат рибофлавина высушивают на распылительной сушилке.
Получение витамина В2
Витамин В12 (цианкобаламин) представлен группой биологически активных веществ, содержащих в своем составе трехвалентный кобальт, аминные и цианистые группировки, которые могут быть замещены другими радикалами: – ОН-, Cl-, Br-. Цианкобаламин получают только микробиологическим синтезом. Его продуцентами являются мутанты Propionоbacterium shermani М-82 и Pseudomonas denitrificans М-2436 продуцируют на жидкой среде до 58 – 59 мг/л цианкобаламина. Витамин В12 получают путем культивирования Propionobacterium в анаэробных условиях. Питательная среда содержит: глюкозу, кукурузный экстракт, соли кобальта, сульфат аммония. рН питательной среды около 7,0, что достигается добавлением гидроксида аммония. Длительность ферментации – 6 суток. Спустя 72 ч после начала культивирования в ферментер вносят 5,6-диметилбензимидозол (ДМБ) – предшественник витамина В12, в качестве затравки. Цианкобаламин накапливается в клетках бактерий, поэтому биомассу отделяют от культуральной жидкости методом сепарации. Витамин В12 экстрагируют из биомассы водой, подкисленной до рН 4,5 – 5 при температуре 85-90°C. Очистка – экстракция органическими растворителями. В итоге — кристаллы витамина В12, их отфильтровывают на холоде, промывают в ацетоне и сушат в экстракторе.
Получение витамина В12
Витамин С – группа соединений – производных L-(+)-гулоновой кислоты. Основные способы получения — выделение из растительного сырья, химический синтез из Д-глюкозы через Д-сорбит, биотехнологический способ (представляет собой комбинированный химико-ферментативный процесс). Ферментацию Gluconobacter oxydans проводят на средах, содержащих сорбит (20 %), кукурузный или дрожжевой экстракт, при интенсивной аэрации (8 – 10 г О2/л/ч). Выход L-сорбозы может достичь 98 % за 1 – 2 суток. При достижении культурой лаг-фазы можно дополнительно внести в среду сорбит, доводя его концентрацию до 25 %. Ферментацию бактерий проводят в периодическом или непрерывном режиме. Принципиально доказана возможность получения L-сорбозы из сорбита с помощью иммобилизованных клеток в полиакриламидном геле.
Биосинтез витамина С
Витамин D(кальцеферол) – группа родственных соединений, обладающих антирахитичным действием, в основе которых находится эргостерин, обнаруженный в клеточных мембранах эукариот. Продуцент — дрожжи или мицеллиальные грибы, которые подвергают гидролизу раствором соляной кислоты, гидролизат обрабатывают спиртом при 75 – 78 °C и фильтруют. Фильтрат упаривают. Используют осадок, содержащий витамин D, его промывают, размельчают, дважды обрабатывают спиртом, спиртовые экстракты объединяют и сгущают, полученный «липидный концентрат» подвергают омылению гидроксидом натрия. Эргостерин содержится в неомыленной фракции и выпадает в осадок при температуре – 0 °C;его растворяют в спирте или бензоле с целью очистки. Выпавшие кристаллы сушат в эфире. Чистый препарат эргостерина облучают ультрафиолетовым светом для получения витамина D, эфир отгоняют, раствор витамина D концентрируют и кристаллизуют.
Получение витамина D
Витамин Н (биотин) – кофактор не менее десяти ферментов, ведущих в клетке синтез многих жизненно необходимых веществ. На питательной среде выращивают грибы рода Rhizopus – продуцент биотина. Биомассу гриба отфильтровывают, а к культуральной жидкости, в которую ризопус выделяет большое количество биотина, добавляют метилотрофные дрожжи, которые за короткое время поглощают почти весь имеющийся в среде витамин. Смесь биомассы ризопуса и дрожжей, богатая биотином, и есть биотиновый препарат. Rhizopus delemar образует около 1 мг биотина на 1 л среды и большую его часть выделяет наружу.
Получение витамина Н (В7)
Каротиноиды — это изопреноидные соединения, синтезирующиеся многими пигментными микроорганизмами из рода Aleuria, Blakeslea, Corynebacterium, Flexibacter, Fusarium, Halobacterium, Phycomyces, Pseudomonas, Rhodotorula, Sarcina, Sporobolomyces и др. Из одной молекулы В-каротина при гидролизе образуются две молекулы витамина A. В качестве продуцентов каротиноидов можно использовать бактерии, дрожжи, мицелиальные грибы. Более часто применяют зигомицеты Blakeslea trispora и Choanephora conjuncta. Вначале штаммы выращивают раздельно, а затем — совместно при 26 С и усиленной аэрации с последующим переносом в основной ферментатор. Длительность ферментации — 6-7 дней. Каротиноиды извлекают ацетоном, переводят в неполярный растворитель. В случаях извлечения белково-каротиноидных комплексов, применяют поверхностно-активные вещества в концентрации 1-2%. В целях очистки можно прибегать к методам хроматографии или к смене растворителей. Витамин A из В-каротина сравнительно легко можно получить при гидролизе.
Биосинтез витамина А
Традиционные способы получения витаминов основаны либо на переработке больших количеств ценного сырья, либо (в редком случае) на химическом синтезе, следовательно, витаминная промышленность нуждается в более эффективных технологиях, и такие технологии успешно создаются. С помощью лишь генетических манипуляций (воздействием на регуляцию метаболизма) были получены штаммы микроорганизмов, которые производят в десятки тысяч раз больше витаминов, чем необходимо для их роста.
Источник