Витамины – как предшественники коферментов. Их роль в ферментативном катализе. примеры
Помимо витаминных препаратов в спортивной медицине применяются также некоторые их производные (коферменты).
биокаталитическая активнось, как правило, принадлежит не самим витаминам, а продуктам их биотрансформации — коферментам. Коферменты, соединяясь со специфическими белками, образуют ферменты — катализаторы биохимических реакций, лежащие в основе физиологических функций организма.
К числу коферментных препаратов витаминной природы относятся кокарбоксилаза (коферментная форма тиамина — витамин В1), пиридоксальфосфат. (витамин Вб), кобамамид (витамин В 12). Группа препаратов, созданных на основе витаминов, представлена пиридитолом (производное пиридоксина) — имеет мягкий стимулирующий эффект на ткани головного мозга; пантогамом (гомолог пантотеновой кислоты, содержащий гамма-аминомасляную кислоту); оксикобаламином (метаболит витамина В 12).
Кокарбоксилаза. Кофермент, образующийся в организме человека из поступающего извне тиамина. В спортивной медицине применяется для лечения перенапряжения миокарда и нервной системы, при печеночном синдроме, невритах и радикулитах. Эффект дает только внутривенное введение в дозе не менее 100 мг.
Оксикобаламин. Является метаболитом цианкобаламина (витамин В12). По фармакологическому действию близок витамину В 12, но по сравнению с ним быстрее превращается в организме в активную коферментную форму и дольше сохраняется в крови, так как более прочно связывается с белками плазмы и медленнее выделяется с мочой. Показания к применению такие же, как для В 12.
Карнитин. Витаминоподобное вещество, частично поступающее с пищей, частично синтезируемое в организме человека. Способствует окислению жирных кислот, синтезу аминокислот и нуклеиновых кислот. В спортивной медицине рекомендован для повышения работоспособности в видах спорта с преимущественным проявлением выносливости для ускорения течения процессов восстановления. В скоростно-силовых видах спорта оказывает стимулирующее действие на рост мышц. Выпускается как L-карнитин (элькар, карнифит).
Бета-каротин. В организме превращается в витамин А, когда мы испытываем его нехватку. Бета-каротин, поступивший с едой, используется организмом как антиоксидант.
Лучшие источники: морковь, помидоры, кресс-салат, цветная капуста, шпинат, манго, тыква, дыня, абрикосы, а также другие фрукты и овощи с яркой окраской.
Содержание бета-каротина уменьшается при хранении продуктов на солнечном свету. Бета-каротин чрезвычайно стабилен при кулинарной обработке, и его количество может даже увеличиться. Это происходит потому, что бетакаротин высвобождается из клеток, когда при тепловой обработке овощей размягчаются клеточные стенки.
Суточная потребность для бета-каротина официально не установлена, однако многие ученые рекомендуют дозу примерно 15 мг в день для максимальной антиоксидантной защиты.
О токсичности этого пищевого соединения ничего не известно, хотя очень большие дозы придают коже желтоватый оттенок.
Источник
Витамины – как предшественники коферментов.
Биохимическая роль кофермента в катализе
Перенос протона и элетрона
Перенос Н+, входит в состав дыхат. фермента
Окисление декарбоксилирование кетокислот
Обмен веществ, активация витамина С, перенос CO2 декарбоксилирование
переносчик ацильных групп(CH3CO) кислотных остатков.
Перенос аминогрупп. Ок-ие аминокислот: отщепление аминогрупп и карбоксо-групп.
Вс (фолиевая к-та)
Перенос одноуглеродных групп, синтез пуриновых оснований
Витамины — (от лат. vita — жизнь), низкомолекулярные органические соединения различной химической природы, необходимые в незначительных количествах для нормального обмена веществ и жизнедеятельности живых организмов. Многие витамины — предшественники коферментов, в составе которых участвуют в различных ферментативных реакциях. Человек и животные не синтезируют витамины или синтезируют их в недостаточном количестве и поэтому должны получать витамины с пищей. Первоисточником витаминов обычно служат растения. Некоторые витамины образуются микрофлорой кишечника. Длительное употребление пищи, лишенной витаминов, вызывает заболевания (гипо- и авитаминозы). Многие витамины, используемые как лекарственные препараты, получают химическим или микробиологическим синтезом. Основные витамины: А1(ретинол), В1(тиамин), В2(рибофлавин), В3(пантотеновая кислота), В6(пиридоксин), В12(цианкобаламин), Вс(фолиевая кислота), С (аскорбиновая кислота), D (кальциферолы), Е (токоферолы), Н (биотин), РР (никотиновая кислота), К1(филлохинон).
По химическому строению и физико-химическим свойствам (в частности, по растворимости) витамины делят на 2 группы.
Жирорастворимые витамины: А, Д, Е, К, провитамин А (каротиноиды).
Водорастворимые витамины: В1, В2, В5, В6, В9, В12, С, Н, РР.
По физиологическому действию на человеческий организм классификация витаминов выглядит следующим образом:
антиоксиданты (витамины А, С, Е, каротиноиды);
прогормоны (витамин А и Д);
коферменты (витамины В6, В1, В2, РР, В5, В9, В12, витамин К, витамин Н).
Водорастворимые витамины при их избыточном поступлении в организм, будучи хорошо растворимыми в воде, быстро выводятся из организма.
Жирорастворимые витамины хорошо растворимы в жирах и легко накапливаются в организме при их избыточном поступлении с пищей. Их накопление в организме может вызвать расстройство обиена веществ, называемое гипервитаминозом, и даже гибель организма.
Номенклатура витаминов базируется на трех принципах :
1)По буквам латинского алфавита – А , B, C, D
2)По особенностям химического строения – тиамин, рибофлавин и др.
3)По болезни, развивающейся при отсутсвии данного витамина, с приставкой «анти» — антиневритный, антирахитный, антицинготный и др.
Источник
Роль витаминов в образовании и функционировании коферментов
Витамины являются предшественниками коферментов. Некоторые из них непрочно связаны с белком (пр. НАД + , НSКоА, и др). Есть коферменты, которые прочно связаны с апоферментом, т.е. представляют собой простетическую группу (пр. гем, флавиновые коферменты).
Большинство коферментов не синтезируются в организме млекопитающих. Они должны поступать в организм с пищей (как правило, растительной). Однако в организм попадают не сами коферменты, а их предшественники — витамины. Уже в клетке витамины модифицируются до коферментной формы.
Витамин PP (никотинамид)
Коф.: пиридоксаль-P (ПФ)
КоФ.: тиаминпирофосфат (ТПФ)
Витамин В5 (пантотеновая к-та)
КоФ: HS-KoA – кофермент лигаз и трансфераз
Витамин В9 (фолиевая кислота)
КоФ.: тетрагидрофолиевая кислота (ТГФК – Н4— фолат) – переносчик одноуглеродных групп
Витамин Н (биотин)
КоФ.: биоцитин – простетическая группа Ф-ов, катализирующих реакции карбоксилирования
Витамин С (аскорбиновая к-та)
КоФ.: аскорбиновая кислота (восстановленная форма) и дегидроаскорбиновая кислота (окисленная форма) — обе эти формы аскорбиновой кислоты быстро и обратимо переходят друг в друга и в качестве коферментов участвуют в окислительно-восстановительных реакциях.
Билет 8
Влияние концентрации субстрата на скорость ферментативных реакций. Уравнение Михаэлиса-Ментен. Графическое выражение зависимости скорости ферментативных реакций от концентрации субстрата. Константа Михаэлиса ферментов
Одним из наиболее существенных факторов, определяющих скорость ферментативной реакции, является концентрация субстрата (или субстратов) и продукта (продуктов). При постоянной концентрации фермента и увеличении концентрации субстрата скорость реакции постепенно увеличивается, достигая определенного максимума, когда дальнейшее увеличение количества субстрата уже не оказывает влияния на скорость ферментативной реакции. В этом случае принято считать, что субстрат находится в избытке, а фермент полностью насыщен, т.е. все молекулы фермента связаны с субстратом. Ограничивающим скорость реакции фактором в данном случае становится концентрация фермента.
Именно при этих условиях определяют величину максимальной скорости (Vmax) и значения константы Михаэлиса (Km). Концентрация субстрата зависит от питания, возраста, физической нагрузки.
Зависимость скорости ферментативной реакции субстрата выражается уравнением Михаэлиса-Ментен:
Vmax – максимальная скорость реакции
[S] – концентрация субстрата
Km – константа Михаэлиса.
Анализ уравнения Михаэлиса-Ментен:
- Концентрация субстрата мала, стремиться к нулю, [S]
0,
При этих условиях [S] можно пренебречь:
- Концентрация субстрата стремится к бесконечности, пренебрегаем Km, и уравнение имеет вид:
Сокращаем на [S] и скорость реакции равняется Vmax.
- Если принять, что
, то из уравнения Михаэлиса-Ментен, разделив его на Vmax, получили Km=[S]:
и разделив на Vmax получим
. Решая уравнение относительно Km получаем Km+[S] = 2[S],
Km – величина, численно равная концентрации субстрата при , выраженная в молях. Km = 10 -1 -10 -6 – для клеток организма, величина const.
Km показывает:
- Степень сродства между ферментом и субстратом. Существует обратная зависимость – чем меньше Km, тем больше сродство Ф. к S.
- Km позволяет определить какой субстрат будет превращаться под действием данного фермента:
Например, этиленгликоль – составная часть антифриза, алкагольдегидрогеназа (АДГ) будет превращать его в щавелевую кислоту, которая является ядом для печени.
Алкагольдегидрогеназа превращает этиловый спирт в уксусный альдегид и степень сродства АДГ к С2Н5ОН выше, чем к этиленгликолю и на этом основан способ нейтрализации этиленгликоля.
- Km показывает степень сродства между белковой и небелковой частью Ф.,
- Km позволяет определить вид ингибирования.
Способ определения Km
- Построение графика Михаэлиса-Ментен:
I участок – с увеличением концентрации субстрата увеличивается скорость ферментативной реакции
II участок – с увеличением концентрации субстрата скорость реакции не изменяется, т.к. все активные центры заняты.
Недостаток графика Михаэлиса-Ментен при определении Km заключается в том, что Vmax достигается с трудом, реакции в клетке протекают с оптимальной скоростью, а не Vmax.
- Построение графика Лайнуэвера-Бэрка – метод обратных величин
Преимущество метода заключается в том, что прямую можно построить по двум точкам и нет необходимости определять максимальную скорость.
Источник
Роль витаминов в построении коферментов
Автор работы: Пользователь скрыл имя, 27 Апреля 2015 в 13:48, реферат
Краткое описание
Витамины (от латинского Vita — жизнь) — необходимые для нормальной жизнедеятельности низкомолекулярные органические соединения с высокой биологической активностью, которые не синтезируются (или синтезируются в недостаточном количестве) в организме и поступают в организм с пищей. Содержание витаминов в продуктах, однако, значительно ниже, чем основных нутриентов — белков, жиров и углеводов, и не превышает, как правило, 10-100 мг/100 г продукта.
Прикрепленные файлы: 1 файл
Морев_Роль витаминов в построении коферментов.docx
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования
Национальный государственный Университет физической культуры, cпорта и здоровья имени П. Ф. Лесгафта, Санкт- Петербург
по дисциплине: «Биохимия»
на тему: «Роль витаминов в построении коферментов»
Витамины (от латинского Vita — жизнь) — необходимые для нормальной жизнедеятельности низкомолекулярные органические соединения с высокой биологической активностью, которые не синтезируются (или синтезируются в недостаточном количестве) в организме и поступают в организм с пищей. Содержание витаминов в продуктах, однако, значительно ниже, чем основных нутриентов — белков, жиров и углеводов, и не превышает, как правило, 10-100 мг/100 г продукта.
Витамины, участвующие в биохимических процессах, являются предшественниками коферментов (например витамин В1) или собственно коферментами (например липоамид).
Коферменты – органические природные соединения небелковой природы, необходимые для осуществления каталитического действия ферментов. Коферменты вместе с функциональными группами аминокислотных остатков фермента формируют активный центр фермента, на котором происходит связывание с субстратом и образование активированного фермент-субстратного комплекса.
Некоторые витамины обеспечивают осуществление физиологических процессов, например: витамин А2 участвует в процессе зрительного восприятия; витамин А3 – в процессе дифференцировки клеток; витамин D – в процессе формирования костной ткани; витамин Е – антиоксидант. Известно более 20 соединений, которые могут быть отнесены к витаминам.
Наряду с витаминами, необходимость которых для человека и животных бесспорно установлена, в пище содержатся биологически активные вещества, которые по своим функциям ближе не к витаминам, а к другим незаменимым пищевым веществам. Эти вещества называют витаминоподобными. К ним обычно относят биофлавоноиды, холин, инозит, оротовую, пангамовую и пара-аминобензойную кислоты, полиненасыщенные жирные кислоты и др.
Соединения, которые не являются витаминами, но могут служить предшественниками их образования в организме, называются провитаминами. К ним относятся, например, каротины, расщепляющиеся в организме с образованием витамина А, и некоторые стерины (эргостерин, 7-дегидрохолестерин и др.), превращающиеся в витамин D.
Витамины классифицируют по их растворимости, а именно различают водорастворимые (гидрофильные) и жирорастворимые (липофильные) витамины. Биологическая роль водорастворимых витаминов определяется их участием в построении различных коферментов. Биологическая ценность жирорастворимых витаминов в значительной мере связана с их участием в контроле функционального состояния мембран клетки и субклеточных структур. Необходимость водо- и жирорастворимых витаминов для нормального течения различных биологических процессов предопределяет развитие выраженных нарушений деятельности органов и систем при дефиците любого из витаминов.
С момента открытия первых витаминов и до настоящего времени используется буквенная классификация.
Физиологические эффекты витамина А весьма разнообразны: стимуляция процессов роста, участие в окислительных процессах (активация молекулярного кислорода), обмене нуклеиновых кислот, белков, углеводов, холестерина, влияние на функции желез внутренней секреции (щитовидная, надпочечники), стимуляция иммунитета, процессов темновой адаптации (необходим для ресинтеза зрительного пурпура — родопсина).Витамин А обеспечивает процессы регенерации покровного, железистого эпителия кожи, эпителия слизистой оболочки верхних дыхательных путей, мочевыводящих путей, желудочно-кишечного тракта.
Витамин D оказывает влияние на внутриклеточные окислительные процессы, минеральный обмен, в первую очередь кальциево-фосфорный (поддерживает постоянный уровень кальция и фосфора в крови, улучшает его всасывание в кишечнике, реабсорбцию фосфора в канальцах почек).Кроме того, витамин D оказывает влияние на эндокринные железы (гипофиз, надпочечники, щитовидная железа, паращитовидная железа), обмен холестерина.Витамин D влияет на содержание фосфатазы (превращает органические фосфаты в ионы неорганического фосфора) в крови, которая играет важную роль в кальцификации костей, обогащении костей фосфорными радикалами и в образовании нерастворимого фосфата кальция.При недостаточности витамина D в тяжелых случаях развивается рахит, при котором нарушается образование костей (страдает превращение хрящевой ткани в костную, снижается количество кальция и фосфора в костях, недостаточно кальцифицируется остеоидный матрикс), рост зубов, поражаются мышцы, нарушается общее состояние организма, страдают нервная и сердечно-сосудистая системы, желудочно-кишечный тракт.
Защищает в организме ненасыщенные жирные кислоты и витамин А от окисления (природный антиоксидант).
Синтезируется микрофлорой кишечника.Применение витамина К рекомендуется при различных формах геморрагического синдрома, легочных, маточных, паренхиматозных кровотечениях, пневмониях, заболеваниях печени, хронических поражениях желудка, в хирургической практике (в частности при подготовке к операции).
Оказывает благотворное действие на клеточное дыхание, процессы ассимиляции, обмен веществ, углеводный, жировой, белковый, минеральный обмен, сердечно-сосудистую систему и органы пищеварения, функцию нервной системы, в том числе на нервную трофику (питание).
Активно участвует в обмене веществ: окислительно-восстановительных процессах, клеточном дыхании, окислении углеводов, молочной кислоты, альдегидов, обмене жиров, порфиринов, синтезе белков, окислительном дезаминировании аминокислот. Необходим для обеспечения роста.Рибофлавин оказывает регулярующее действие на функцию ЦНС, особенно ее вегетативного отдела, стимулирует эритропоэз (генерацию новых клеток крови — эритроцитов), регулирует функции печени, благоприятно влияет на сетчатку глаза и пр.
Участвует в белковом и жировом обмене, реакциях переаминирования и декарбоксилирования аминокислот, переносе сульфгидрильных групп, обмене триптофана, гистидина, метионина, цистина, окислении и синтезе жира, стимулирует использование организмом ненасыщенных жирных кислот. Может синтезироваться бактериальной флорой кишечника.
- Цианокобаламин (витамин B12)
Играет важную роль в процессах гемопоэза (кроветворения), регуляции эритропоэза (созревании эритроцитов), вместе с фолиевой кислотой участвует в белковом обмене — синтезе метильных групп, образовании метионина, холина. Кроме того, вместе с фолиевой кислотой витамин B12 участвует в синтезе нуклеиновых кислот, способствует ассимиляции аминокислот и их лучшему использованию клетками. Витамин B12способствует превращению в организме каротина в витамин А и его отложению в тканях. Синтезируется в толстой кишке.
- Аскорбиновая кислота (витамин С)
Принимает участие в окислительно-восстановительных реакциях, в обеспечении нормального течения белкового, углеводного и жирового обмена. Под действием витамина С органы обогащаются гликогеном, в крови повышается количество пирвиноградной кислоты, мелкодисперстных белков, окисление тирозина, регулируется содержание полипептидов и холестерина. Он благотворно влияет на ассимиляторно-диссимиляторные процессы в клетке, регенерацию аморфного склеивающего вещества эндотелия капилляров, на регулярование проницаемости капилляров и образование коллагена. Оказывает влияние на иммуно-биологические реакции организма.
Витамин С стимулирует образование антител, повышает фагоцитарную активность крови, пролиферацию ретикулоэндотелиальных элементов, предотвращает возникновение или смягчает течение анафилактического шока.Витамин С оказывает благоприятное влияние на антитоксическую функцию печени, стимулирует внешнесекреторную функцию поджелудочной железы, образование протромбина, эритропоэз, фильтрационную способность почек и др.
- Витамин Р (биофлавоноиды, полифенолы)
Вещества с Р-витаминным действием — природные соединения, так называемые полифенолы, наряду с аскорбиновой кислотой обеспечивают нормальную проницаемость капилляров, регенерацию их аморфного склеивающего вещества.Под влиянием соединений, обладающих Р-витаминным действием, понижается артериальное давление крови, замедляется ритм сердца, увеличивается его минутный объем, повышается диурез, желчевыведение, увеличивается содержание кальция в сыворотке крови, усиливается тканевое дыхание, уменьшается гипоксия, снижается повышенная функция щитовидной железы и др.Биологический эффект витамина Р тесно связан с аскорбиновой кислотой. Витамин Р способствует усвоению витамина С.
- Витамин РР (ниацин, никотиновая кислота)
Широко участвует в разнообразных процессах обмена веществ (окислительно- восстановительные процессы, регуляция углеводного обмена, соотношение между содержанием в организме никотиновой кислоты и использованием организмом пищевого белка, обмен холестерина, обмен железа и т.п.).
Никотиновая кислота влияет на функциональное состояние ЦНС, сердечно-сосудистой системы (играют роль сосудорасширяющие ее свойства — понижение артериального и понижение венозного давления), органов пищеварения (повышение секреторной и моторной функций желудка, стимуляция внешнесекреторной функции поджелудочной железы, благоприятное влияние на функции печени), систему кроветворения [стимуляция костного мозга, эритропоэза (синтеза эритроцитов крови)], усиливает действие инсулина, меркузала, дигиталиса и пр.
Содержится в листьях растений, дрожжах, печени, почках. Участвует в процессах гемопоэза (кроветворения). Она необходима для регуляции эритропоэза (синтеза эритроцитов крови), тромбоцитопоэза (генерации тромбоцитов) и особенно лейкопоэза (образование лейкоцитов крови), оказывает стимулирующее влияние на синтез белков (катализатор синтеза аминокислот). Синтезируется в организме.
- Пантотеновая кислота (витамин B3)
Важна при расщеплении жиров, углеводов и аминокислот, а также для синтеза жизненно важных жирных кислот и некоторых гормонов. Синтезируется микрофлорой кишечника.
Важен при синтезе углеводов и жирных кислот. Синтезируется микрофлорой кишечника.
Коферменты (коэнзимы) – органические природные соединения, необходимые для осуществления каталитического действия ферментов. Коферменты выполняют функцию переносчиков электронов, атомов или функциональных групп с одного субстрата на другой. Ферментами называют белки, выполняющие в организмах
функции катализаторов химических реакций в клетках. Большинство ферментов состоят из белкового компонента (апофермента) и кофермента, имеющего сравнительно небольшую молекулярную массу. Коферменты вместе с функциональными группами аминокислотных остатков апофермента формируют активный центр фермента, на котором происходит связывание с субстратом и образование активированного фермент-субстратного комплекса. Сами по себе коферменты каталитически неактивны, так же, как и апоферменты без коферментов. Таким образом, образование комплекса апофермента с оферментом – один из способов регуляции активности фермента в организме.
Следует также иметь в виду, что в проявлении каталитического действия ферментов большую роль играют различные неорганические ионы, например К+
, Zn2+, Mg2+ и др. В большинстве случаев катионы металлов взаимодействуют с апоферментной частью молекулы фермента, при этом структура фермента меняется таким образом, что собственно и формируется его активный центр. Такие ионы хотя и активируют фермент, но не входят в состав его активного центра. Известны ферменты, например карбоангидраза, в которых катионы металлов (в данном случае Zn2+) входят в состав активного центра. В любом случае такие неорганические ионы, необходимые для проявления каталитической активности ферментов, называют кофакторами.
Коферменты обладают как минимум двумя функциональными группами или реакционноспособными участками, обуславливающими специфическое связывание с апоферментом с одной стороны и с субстратом – с другой. Известны десятки органических соединений, выполняющих функции коферментов. Эти вещества, как правило, содержат системы сопряженных π-связей и (или) гетероатомы. Многие
коферменты включают в качестве структурного компонента остаток
молекулы витамина (коферментные формы витаминов).
По способам взаимодействия с апоферментом различают растворимые коферменты и простетические группы.
Растворимый кофермент присоединяется к молекуле фермента во
время реакции, химически изменяется и затем снова освобождается. Пер-
Источник