Меню

Витамины есть только растениях

Витамины в продуктах питания и как их сохранить

Основным источником витаминов и минеральных веществ для человека является пища. Содержание витаминов в рационе может меняться и зависит от разных факторов: сорта, вида, условий произрастания сырья пищевых продуктов и блюд, способов и сроков их хранения, характера технологической обработки, выбора блюд и национальных предпочтений в питании.

Источники витаминов растительного и животного происхождения

Морковь, тыква, облепиха, сладкий перец

Сливочное масло, сыр,
яйца, печень, рыбий жир

Печень трески, рыба, рыбий жир,
печень, яйцо, сливочное масло

Растительные масла
(кукурузное, подсолнечное, оливковое),
горох, облепиха, зеленые бобы,
крупы, хлеб, орехи.

Овощи, листовая зелень,
шпинат, капуста, кабачки,
растительные масла.

Бобовые, зеленый горошек,
крупы (гречневая, пшенная, овсяная),
хлеб цельнозерновой,
хлебопродукты из муки грубого помола,
дрожжи пивные.

Свинина, печень, почки

Бобовые, зеленый горошек,
крупы (гречневая, овсяная),
хлеб из муки грубого помола,
дрожжи.

Молоко цельное,
творог, сыр,
печень, почки, мясо

Бобовые (зеленый горох, чечевица, фасоль), крупы (гречневая, пшенная, овсяная), хлеб грубого помола, пшеничные зародыши, арахис, шпинат, томаты, картофель, грибы, дрожжи пекарские

Мясо, печень, сыр,
мясо, колбасные изделия

Бобовые, , помидоры, картофель, зародыши пшеницы, рис, дрожжи пивные, фрукты.

Печень, почки, мясо, птица, рыба, яичный желток, молоко мясные субпродукты

Бобовые, картофель, хлеб из муки грубого помола, дрожжи пивные, гранат.

Печень, почки, мясо, птица, рыба, яичный желток, печень.

Проростки пшеницы, бобовые, хлеб (ржаной, из цельного зерна), зелень (петрушка, шпинат, салат, лук и др.), дрожжи пивные.

Печень, печень трески , мясные субпродукты

Дрожжи, морские
водоросли

Печень, почки, икра,
яйца, сыр, молоко,
творог, мясо, рыба

Бобовые (соя, горох), дрожжи.

Яйца, печень,
почки

Перец сладкий, шиповник, черная смородина, облепиха, цитрусовые, капуста, зеленый горошек, зеленый лук.

Источник

Содержание витаминов в зависимости от условий

Большее или меньшее содержание витаминов зависит не только от видовых особенностей и возрастных изменений у растений, но и от условий их выращивания. Еще в 30-х годах было установлено, что на Севере растения богаче витамином C. Так, в плодах шиповника, произрастающих на европейском севере, было примерно 500 мг витамина на килограмм сухого веса, а в более южных районах — только 300 мг/кг. Повышенное содержание этого витамина наблюдается и у растений, обитающих в горах. Это подтверждается специально поставленными опытами. В проростках гороха и пшеницы, культивируемых при температуре +6°, накапливается этого витамина значительно больше, чем в таких же проростках, выращиваемых при +25°. Можно думать, что низкие температуры способствуют образованию витамина C. Очевидно, накопление аскорбиновой кислоты каким-то образом связано с устойчивостью растения к холоду.

От климатических условий зависит содержание в растениях и других витаминов. Так, в зерне озимой пшеницы, произрастающей на Крайнем Севере, было 2,6 мг/кг сухого веса, в Днепропетровской области 5,8 мг/кг. Содержание каротина во втором случае тоже было повышено.

Очевидно, что при районировании сельскохозяйственных культур важно учитывать влияние климатических условий на их витаминные качества. Но ведь климат — понятие собирательное; в конкретных почвенно-климатических условиях на растение действует комплекс условий, и иногда трудно понять, какой из факторов решающий. Отсюда возникает необходимость понять роль отдельных факторов внешней среды в витаминонакоплении.

Мы уже говорили, что при относительно низких температурах витамин C образуется более энергично. Чем выше температура, тем меньше интенсивность его синтеза. При сравнительно высоких температурах идет и более энергичное разрушение этого витамина. Так, листовая и кочанная капуста при температуре 0° теряет 40% аскорбиновой кислоты за 3 недели хранения; при 10° это же количество витамина теряется за 4 дня, а при 21° — за один день.

Однако в некоторых плодах, хранящихся при пониженной температуре, наблюдается не разрушение, а даже накопление аскорбиновой кислоты. По данным А. А. Калесника, в условиях холодного хранения плодов содержание витамина С повысилось: в мандаринах — с 455 до 517 мг/кг, в апельсинах — с 633 до 697, в лимонах — с 501 до 626 мг/кг. Значит, в этих снятых с деревьев плодах при низкой температуре продолжается синтез аскорбиновой кислоты. Повышение содержания аскорбиновой кислоты в растениях, произрастающих при пониженных температурах, имеет огромное биологическое значение, так как позволяет организму противостоять вредному действию низких температур.

В отличие от аскорбиновой кислоты содержание других витаминов в растениях при пониженной температуре уменьшается. Например, для наибольшего накопления каротина в корнях моркови и свеклы необходима температура 15—20°. Достаточно высокие температуры нужны и для биосинтеза витамина B2 у растений и у микроорганизмов.

Обеспеченность растений водой — не менее важный фактор, влияющий на синтез витаминов. В засушливых условиях, когда новообразование веществ в растениях замедлено, содержание в них витаминов также снижается. Если выращиваемый в Средней Азии перец в период созревания плодов многократно поливается, содержание витаминов в нем достигает 2160 мг/кг, тогда как при недостатке влаги оно составляет всего 496 мг/кг.

То же происходит и при высушивании растений. Например, при сушке травы на сено в ней значительно падает содержание каротина, иногда до 80—90% от его первоначального количества. Полагают, что при этом происходит окисление каротина ферментами, а свет активирует их деятельность. При силосовании кормов происходит значительно меньшая потеря каротина.

Свет оказывает очень сильное влияние на жизненные процессы, в том числе на образование в растениях многих веществ. Наиболее полно изучено действие солнечной радиации на образование каротина. Это и понятно, так как каротин почти всегда сопутствует хлорофиллу и принимает участие в фотосинтезе. Роль этого пигмента в фотохимических реакциях известна давно. В связи с этим считалось, что, как и для хлорофилла, для образования каротина необходим свет. Однако позже выяснилось, что каротин может синтезироваться и в лишенных света частях «растений. Правда, его оказывается значительно меньше, чем при освещении. Каротин образуется также в дрожжах, грибах и бактериях, выросших в темноте. Однако и у этих организмов свет стимулирует образование провитамина A и близких к нему соединений: на свету их образуется значительно больше.

Свет оказывает влияние и на синтез витамина C. Как и каротин, аскорбиновая кислота может образоваться при недостатке света и даже в темноте, но при хорошем освещении растений ее накапливается в тканях значительно больше.

Давно было установлено, что в годы с небольшим количеством солнечных дней содержание витамина C в плодах уменьшается. Еще ярче это проявляется в овощах, выращенных в условиях закрытого грунта. Интересно, что содержание витамина C в растениях закономерно меняется и в течение суток: ночью аскорбиновой кислоты в листьях оказывается мало, на рассвете ее концентрация увеличивается, а в дневные часы достигает максимума. Подобная закономерность найдена и в ягодах черной смородины. Несомненно, она стоит в связи с действием света.

Положительное действие света на образование витамина C состоит в первую очередь в том, что образуется больше сахаров, необходимых для его биосинтеза. Возможно также, что свет активирует ферменты, принимающие участие в синтезе аскорбиновой кислоты. Это подтверждает, например, такой факт: если культивировать изолированные, лишенные хлорофилла корни на искусственной среде в темноте и параллельно такие же на свету, то содержание витамина C на свету оказывается много больше. Понятно, что в корнях фотосинтез отсутствует и сахара здесь вновь не образуются. Значит, влияние света осуществляется через активирование ферментов.

Биосинтез других витаминов также находится в большой зависимости от света. Например, при проращивании семян в темноте в них оказывается меньше витаминов B1, B2, PP, E и др.

Итак, температура, влага и свет — факторы, которыми можно влиять на витаминонакопление в растениях. В той мере, в какой эти факторы поддаются регулированию, мы можем регулировать и синтез витаминов.

Есть и другие методы воздействия, которыми тоже можно стимулировать образование витаминов в растениях. Это в первую очередь, конечно, воздействие через минеральное питание. Совершенно естественно, что достаточная обеспеченность минеральными веществами составляет непременное условие нормального синтеза всех веществ, в том числе и витаминов.

При этом корни растения являются не только поставщиками минеральных элементов из почвы, но и сами, как мы говорили выше, участвуют в синтезе витаминов. Наиболее полно изучено влияние минеральных удобрений на накопление опять-таки каротина. Выяснено, что азотные удобрения заметно увеличивают содержание каротина в зеленой массе и в корнях. Особенно же хороший результат получается при сочетании этого удобрения с внесением калия, фосфора и некоторых микроэлементов.

Но повышенные дозы азотных удобрений приводят к уменьшению в растениях витамина C. Наибольшее накопление этого витамина получается при внесении полного удобрения (азот, фосфор, калий). Так, например, урожай ягод черной смородины при внесении полного удобрения составлял 5185 кг/га, при содержании в них 182,7 мг% аскорбиновой кислоты, т. е. 947 г витамина с 1 га. Без удобрения получен урожай 3199 кг с га, с содержанием в ягодах 159,9 мг% витамина, т. е. 510 г витамина с 1 га.

От своевременного и полного удовлетворения потребностей растений в минеральном питании зависят благоприятные условия и для образования других витаминов. Так, например, при недостатке азота в питательной среде нередко снижается содержание в растениях биотина и пантотеновой кислоты. В листьях лука и салата при этом снижается содержание витаминов B1 и B6. Недостаток фосфора и серы приводит к уменьшению в растении витамина РР, биотина и фолиевой кислоты.

Большую роль в биосинтезе витаминов играют микроэлементы. Многие опыты показывают, что подкормка растений бором, марганцем и другими микроэлементами стимулирует накопление витамина C1 в листьях и плодах. Марганец при этом активирует фермент, который принимает участие в образовании аскорбиновой кислоты. Соединения меди нужны для нормального образования витаминов C1 и РР. Цинк необходим для образования витаминов B1 и B6. Это доказывается тем, что если в питательную смесь вводить эти витамины и не давать растениям цинк, то томаты растут почти так же, как с этим микроэлементом (М. Я. Школьник, 1961). Кобальт необходим для образования витамина B12, так как он входит в состав этого витамина. Естественно, что обеспечение организма кобальтом заметно усиливает образование витамина B12.

На «витаминный баланс» растения могут влиять и различные факторы искусственного вмешательства в процессы обмена веществ. В последние годы все больше и больше исследований проводится по влиянию ионизирующих излучений на обмен веществ, рост и развитие растений. Уже получены положительные результаты, указывающие на возможность усиливать и тормозить с их помощью ростовые процессы. Делаются, например, попытки применить небольшие дозы ионизирующих излучений для повышения урожаев, а более высокие — для стерилизации некоторых пищевых продуктов.

В этой связи ведутся исследования по действию радиации на содержание в растительных продуктах витаминов. Выяснено, например, что под воздействием рентгеновских лучей молекула витамина B1 распадается на люмифлавин и люмихром. Удалось найти и вещества, защищающие витамины от вредного действия излучений. Было, например, обнаружено, что находящиеся в тканях глютатион и витамин PP защищают аскорбиновую кислоту от действия лучей Рентгена.

При высоких дозах облучения содержание витаминов в продуктах снижается; это связано с торможением их образования и разрушением. При низких дозах облучения идет заметное накопление витаминов, т. е. усиливается их синтез. Особенно интересно проследить влияние ионизирующих излучений на синтез витамина D2. Широко известно, что этот витамин образуется в животном организме из своего провитамина — эргостерина. Эргостерин же вырабатывают некоторые микробы, например, дрожжи.

Как известно молекула эргостерина поглощает коротковолновые лучи (длина волны 250—300 мм), превращаясь при этом в витамин D2. Оказалось, что при облучении дрожжей лучами Рентгена можно заставить их «выдавать» повышенные дозы эргостерина. Эти факты могут быть использованы и для получения дрожжей, обогащенных витаминами.

Не безразличны для витаминного состава растений стимулирующие и тормозящие рост препараты, которые все шире применяются в растениеводстве. Все они сильно влияют на образование и превращение веществ, в том числе и на витаминный обмен: в зависимости от состава препарата и его дозы содержание витаминов может увеличиваться или резко уменьшаться.

Так, под влиянием стимулирующих доз препарата 2, 4,5-Т, применяемого для усиления образования плодов у помидоров, содержание витамина C в плодах возрастает почти на 50%. Заметно увеличивается содержание этого витамина и при обработке фасоли стимулирующей дозой парахлорфеноксиуксусной кислоты. Когда же красная фасоль опрыскивалась стимулятором 2,4-динитрофенолом, то на 88% повысилось содержание витамина B1 на 60% витамина B2, на 77% витамина PP и на 154% пантотеновой кислоты. Опрыскивание надземной части моркови задерживающим рост раствором 2, 4, 5Т привело к заметному повышению содержания в корне каротина. Обработка клубней картофеля препаратом М-1 проводится для того, чтобы предотвратить их прорастание. Оказалось, что при этом лучше сохраняется аскорбиновая кислота.

Изучение витаминного обмена при химических воздействиях может предупредить практиков от получения урожаев с низким содержанием витаминов. Как известно, при оценке кормов для сельскохозяйственных животных большое значение придается содержанию в них каротина, жизненно необходимого для животных. И вот оказалось, что дифенилаланин — вещество, применяющееся для задержки роста (ингибитор), — даже в слабых дозах почти полностью подавляет биосинтез каротина. Понятно, что использование этого препарата приведет к получению кормов, лишенных каротина.

Источник

Читайте также:  Что такое витамин роста олег григорьев

Про здоровье и витамины © 2022
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.

Adblock
detector
Витамин Продукты растительного происхождения Продукты животного происхождения