Меню

Витамин в12 химическое строение

Витамин В12

Витамин В12 (кобаламин; антианемический витамин) выделен из печени в кристаллическом виде в 1948 г. Задолго до этого было известно, что в печени животных содержится особое вещество, регулирующее процесс кроветворения и оказывающее лечебный эффект при пернициозной (злокачественной) анемии у людей. Однако только в 1955 г. Д. Ходжкин расшифровала его структуру, включая трехмерную пространственную конфигурацию, главным образом при помощи физических методов исследования (рентгенографическая кристаллография). На основании этих данных, а также результатов изучения химического состава для витамина В12 было предложено следующее строение:

В молекуле витамина В12 центральный атом кобальта соединен с атомами азота четырех восстановленных пиррольных колец, образующих порфириноподобное корриновое ядро, и с атомом азота 5,6-диметил-бензимидазола . Кобальтсодержащая часть молекулы витамина представляет собой планарную (плоскостную) фигуру; по отношению к ней перпендикулярно расположен нуклеотидный лиганд, который, помимо 5,6-диметилбензимидазола, содержит рибозу и остаток фосфата у 3-го атома углерода. Вся структура получила название «кобаламин». Были получены производные витамина В12, содержащие ОН-группу (оксикобаламин), хлор (хлоркобаламин), Н2О (аквакобаламин) и азотистую кислоту (нитрито-кобаламин). Из природных источников были выделены, кроме того, аналоги В12, которые вместо 5,6-диметилбензимидазола содержали 5-окси-бензимидазол, или аденин, 2-метиладенин, гипоксантин и метилгипок-сантин. Все они обладали меньшей биологической активностью, чем ко-баламин. Обычно витамин В12 выделяют из микробной массы или животных тканей, используя растворы, содержащие ионы цианида, которые выполняют роль 6-го лиганда кобальта. Однако цианокобаламин метаболически неактивен. В состав В12-коферментов вместо CN входит остаток 5-дезоксиаденозина или метильная группа.

У человека и животных недостаток витамина В12 приводит к развитию злокачественной макроцитарной, мегалобластической анемии. Помимо изменений кроветворной функции, для авитаминоза В12 специфичны также нарушения деятельности нервной системы и резкое снижение кислотности желудочного сока. Оказалось, что для активного процесса всасывания витамина В12 в тонкой кишке обязательным условием является наличие в желудочном соке особого белка – гастромукопротеина, получившего название внутреннего фактора Касла, который специфически связывает витамин В12 в особый сложный комплекс. Точная роль этого фактора во всасывании В12 не выяснена. Предполагают, что в связанном с этим фактором комплексе витамин В12 поступает в клетки слизистой оболочки подвздошной кишки, затем медленно переходит в кровь портальной системы, а внутренний фактор подвергается гидролизу (распаду). Следует указать, что В12 поступает в кровь портальной системы не в свободном состоянии, а в комплексе с двумя белками, получившими название транскобаламинов I и II, один из которых выполняет функцию депо В12 (I), поскольку он более прочно связывается с витамином В12. Поэтому нарушение синтеза внутреннего фактора в слизистой оболочке желудка приводит к развитию авитаминоза В12 даже при наличии в пище достаточного количества кобаламина. В подобных случаях витамин с лечебной целью обычно вводят парентерально или с пищей, но в сочетании с нейтрализованным желудочным соком, в котором содержится внутренний фактор. Подобный метод лечения эффективен при пернициозной анемии. Это указывает на существование определенной связи между развитием злокачественной анемии у человека и нарушением функций желудка. Можно, вероятно, утверждать, что пернициозная анемия, хотя и является следствием авитаминоза В12, но развивается на фоне органических поражений желудка, приводящих к нарушению синтеза в клетках слизистой оболочки желудка внутреннего фактора Касла, или после тотального удаления желудка хирургическим путем.

Витамин В12 используется в клинике для лечения не только перни-циозной анемии, но и других ее форм – мегалобластических анемий с неврологическими нарушениями, которые обычно не поддаются лечению другими витаминами, в частности фолиевой кислотой.

Биологическая роль. Выявлены ферментные системы, в составе которых в качестве простетической группы участвуют не свободный витамин В12, а так называемые В12-коферменты, или кобамидные коферменты. Последние отличаются тем, что содержат 2 типа лигандов: метильную группу и 5′-дезоксиаденозин. Соответственно различают метилкобаламин СН312 и дезоксиаденозилкобаламин. Превращение свободного витамина В12 в В12-коферменты, протекающее в несколько этапов, осуществляется в организме при участии специфических ферментов в присутствии в качестве кофакторов ФАД, восстановленного НАД, АТФ и глутатиона. В частности, при образовании 5-дезоксикобаламинового кофермента АТФ подвергается необычному распаду с отщеплением три-фосфатного остатка по аналогии еще с одной единственной реакцией синтеза 5-аденозилметионина из метионина и АТФ (см. главу 12). Впервые В12-коферменты были выделены Г. Баркером и сотр. в 1958 г. из микроорганизмов, позже было доказано их существование в тканях животных.

Химические реакции, в которых витамин В12 принимает участие как кофермент, условно делят на 2 группы в соответствии с его химической природой. К первой группе относятся реакции трансметилирования, в которых метилкобаламин выполняет роль промежуточного переносчика метильной группы (реакции синтеза метионина и ацетата).

Читайте также:  Child life детский витамин с

Синтез метионина требует, помимо гомоцистеина, наличия N 5 -метил-ТГФК и восстановленного ФАД и протекает согласно уравнению:

Фермент, катализирующий эту реакцию, был открыт в печени человека и ряда животных, а также у микроорганизмов. Получены доказательства, что механизм реакции включает перенос метильной группы N 5 -СН3-ТГФК на активный центр фермента с образованием метил-В12-фермента и последующий перенос этой группы на гомоцистеин. Блокирование этой реакции, наблюдаемое при авитаминозе В12, приводит к накоплению N 5 -СН3-ТГФК и соответственно выключению из сферы химических реакций еще одного важного кофермента.

Вторая группа реакций при участии В12-коферментов заключается во внутримолекулярном переносе водорода в реакциях изомеризации. Механизм этих реакций соответствует схеме:

Видно, что протон водорода движется (перемещается) между двумя соседними атомами углерода и не обменивается с протонами воды. Предполагают, что сначала водород от субстрата переносится на 5-дезокси-кобаламин, а затем обратно на субстрат, меняя местоположение. Например, глутаматмутазная реакция (взаимопревращения глутаминовой и β-метиласпарагиновой кислот), метилмалонилмутазная реакция (обратимое превращение метилмалонил-КоА в сукцинил-КоА), глицерол- и диол-дегидратазные реакции, ферментативные реакции восстановления рибо-нуклеотидов до дезоксирибонуклеотидов и др. В организме человека из указанных процессов открыта только реакция изомеризации метил-малонил-КоА в сукцинил-КоА.

Следует подчеркнуть, что реакция изомеризации метилмалонил-КоА требует наличия 5′-дезоксиаденозилкобаламина в качестве кофермента, в то время как реакция метилирования (см. ранее) нуждается в метилкобала-мине. Этими обстоятельствами могут быть объяснены некоторые биохимические симптомы недостаточности витамина В12, в частности метил-малонилацидурия и гомоцистинурия. Кроме того, описаны болезни, обусловленные наследственными дефектами синтеза только дезоксиаденозил-кобаламина или обоих В12-коферментов; в этих случаях даже 1000-кратная доза витамина В12 не оказывала лечебного эффекта. В настоящее время высказывается предположение о более широком участии В12-коферментов в ферментативных реакциях трансметилирования, дезаминирования (например, этаноламиддезаминазная реакция) и др. Предстоит, однако, приложить немало усилий, чтобы выяснить молекулярные механизмы действия витамина В12 на процесс кроветворения. Положительный эффект при лечении пернициозной анемии полусырой печенью обусловлен, как стало известно, наличием витамина В12, хотя следует указать, что большего лечебного эффекта можно добиться при одновременном введении внутреннего фактора слизистой оболочки желудка.

Распространение в природе и суточная потребность. Витамин В12 является единственным витамином, синтез которого осуществляется исключительно микроорганизмами; ни растения, ни ткани животных этой способностью не наделены. Основные источники витамина В12 для человека – мясо, говяжья печень, почки, рыба, молоко, яйца. Главным местом накопления витамина В12 в организме человека является печень, в которой содержится до нескольких миллиграммов витамина. В печень он поступает с животной пищей, в частности с мясом, или синтезируется микрофлорой кишечника при условии доставки с пищей кобальта. Суточная потребность в витамине В12 для взрослого человека составляет около 3 мкг (0,003 мг).

Источник

Витамин B12

Цианокобаламин
Общие
Физические свойства
Состояние твёрдое, красного цвета
Молярная масса 1355.38 г/моль
Термические свойства
Т. плав. > 300 °C
Т. кип. > 300 °C °C
Т. всп. N/A °C
Классификация
Рег. номер CAS 68-19-9
PubChem 16212801
Рег. номер EC 200-680-0
Безопасность
NFPA 704
Приводятся данные для стандартных условий (25 °C, 100 кПа), если не указано иного.

Витами́нами B12 называют группу кобальтсодержащих биологически активных веществ, называемых кобаламинами. К ним относят собственно цианокобаламин, гидроксокобаламин и две коферментные формы витамина B12: метилкобаламин и кобамамид.

Иногда в более узком смысле витамином B12 называют цианокобаламин, так как именно в этой форме в организм человека поступает основное количество витамина B12, не упуская из вида то, что он не синоним с B12, и несколько других соединений также обладают B12-витаминной активностью [1] . Витамин B12 также называется внешним фактором Касла .

Содержание

Химическое строение

B12 имеет самое сложное по сравнению с другими витаминами химическое строение, основой которого является корриновое кольцо. Коррин во многом похож на порфирины (сложные химические структуры, входящие в состав гема, хлорофилла и цитохромов), но отличается от порфиринов тем, что два пятичленных гетероцикла в составе коррина соединены между собой непосредственно, а не метиленовым мостиком. В центре корриновой структуры располагается ион кобальта, образующий четыре координационные связи с атомами азота. Ещё одна координационная связь соединяет кобальт с диметилбензимидазольным нуклеотидом. Последняя, шестая координационная связь кобальта остаётся свободной: именно по этой связи и присоединяется цианогруппа, гидроксильная группа, метильный или 5′-дезоксиаденозильный остаток с образованием четырёх вариантов витамина B12, соответственно. Ковалентная связь углерод-кобальт в структуре цианокобаламина — единственный известный в живой природе пример ковалентной связи переходный металл-углерод.

Читайте также:  Витамин е селеном для ветеринарии

Синтез

В природе продуцентами этого витамина являются бактерии и археи. Химический синтез этого соединения в лаборатории весьма сложен; в 1973 году химик Роберт Бёрнс Вудворд разработал схему полного химического синтеза витамина B12, ставшую классикой для химиков-синтетиков.

Фармакокинетика

Связь с белками плазмы — 90 %. Максимальная концентрация после подкожного и внутримышечного введения — через 1 час . Период полувыведения — 500 дней [ источник не указан 1110 дней ] . Из печени выводится с желчью в кишечник и снова всасывается в кровь.

Биологические функции

Ковалентная связь C—Co кофермента B12 участвует в двух типах ферментативных реакций:

  1. Реакции переноса атомов, при которых атом водорода переносится непосредственно с одной группы на другую, при этом замещение происходит по алкильной группе, спиртовому атому кислорода или аминогруппе.
  2. Реакции переноса метильной группы (—CH3) между двумя молекулами.

В организме человека есть только два фермента с коферментом B12:

  1. Метилмалонил-КоА-мутаза, фермент, использующий в качестве кофактора аденозилкобаламин и при помощи реакции, упомянутой выше в п. 1 , катализирует перестановку атомов в углеродном скелете. В результате реакции из L-метилмалонил-КоА получается сукцинил-КоА. Эта реакция является важным звеном в цепи реакций биологического окисления белков и жиров.
  2. 5-метилтетрагидрофолат-гомоцистеин-метилтрансфераза, фермент из группы метилтрансфераз, использующий в качестве кофактора метилкобаламин и при помощи реакции, упомянутой выше в п. 2, катализирует превращение аминокислотыгомоцистеина в аминокислоту метионин.

Применение препарата в лечении анемии

Дефицит витамина B12 является причиной некоторых видов анемий. Впервые это обнаружил исследователь Уильям Мёрфи в эксперименте на собаках, у которых была искусственно вызвана анемия. Подопытные собаки, которым давали в пищу большое количество печени, излечивались от анемии.

Впоследствии учёные Джордж Уипл и Джордж Майнот поставили перед собой задачу выделить из печени фактор, непосредственно отвечающий за это лечебное свойство. Это им удалось, новый противоанемийный фактор получил название витамина B12, и все трое учёных в 1934 году были удостоены Нобелевской премии по медицине.

Заболевания, связанные с недостатком витамина

Витамин B12 всасывается в основном в нижней части подвздошной кишки. На всасывание витамина в сильной степени влияет выработка желудком внутреннего фактора Касла. Мегалобластическая анемия может быть вызвана недостаточным потреблением витамина B12 с пищей, недостаточным производством в организме внутреннего фактора Касла (пернициозная анемия), патологическими процессами в терминальной части подвздошной кишки с нарушением всасывания или конкуренцией за витамин B12 со стороны ленточных червей или бактерий (например, при синдроме слепой петли). При дефиците витамина B12 на фоне анемической клинической картины или без неё могут возникнуть и неврологические расстройства, в том числе демиелинизация и необратимая гибель нервных клеток. Симптомами такой патологии являются онемение или покалывание конечностей и атаксия.

В 2000 и 2002 году американская ассоциация психиатров в своём журнале American Journal of Psychiatry опубликовала результаты исследований, говорящие о влиянии дефицита витамина B12 на появление клинических депрессий у пожилых пациентов.

Обычно дефицит витамина B12 лечат внутримышечными инъекциями препарата цианокобаламина. В последнее время была доказана достаточная эффективность пероральной компенсации дефицита пищевыми добавками в достаточной дозе. Обычное суточное потребление витамина B12 средним человеком из развитой страны составляет примерно 5—7 мкг. Если же давать витамин в количестве 1000—2000 мкг в день, он будет всасываться и при патологии подвздошной кишки, и при дефиците внутреннего фактора Касла. Разработана специальная диагностическая методика по выявлению недостаточности внутреннего фактора Касла, так называемый тест Шиллинга, но нужный для её выполнения реактив пока остаётся очень дорогим и редким.

Потребление витамина B12

Возрастная группа Возраст Суточная норма потребления витамина B12,
мкг/день
Младенцы до 6 месяцев 0,4
Младенцы 7—12 месяцев 0,5
Дети 1—3 года 0,9
Дети 4—8 лет 1,2
Дети 9—13 лет 1,8
Мужчины и женщины 14 лет и старше 2,4
Беременные женщины Любой возраст 2,6
Кормящие женщины Любой возраст 2,8

Источники витамина

Этот витамин вырабатывается микроорганизмами в пищеварительном тракте любого животного, включая человека, как продукт деятельности микрофлоры, однако он не может усваиваться, так как образуется в толстой кишке и не может попасть в тонкую кишку для усвоения организмом.

Витамин, синтезируемый исключительно микроорганизмами: бактериями, актиномицетами. Из животных тканей наиболее богаты витамином B12 печень и почки, где он накапливается.

В пищевой промышленности многих стран витамин добавляют в такие продукты как сухие завтраки, шоколадные батончики, энергетические напитки.

Читайте также:  Какие витамины есть у винегрета

Содержание в продуктах [2] :

Продукт мкг/ 100 г
печень говяжья 60
куриное сердце 7,29
печень свиная 26
осьминог 20
сельдь копчёная 18,7
печень куриная 16,58
сельдь 13
мидии 12
скумбрия 8,71
говядина 1,64—5,48
сыр (швейцарский) 1,6—3,34
баранина 2—3
индейка (филе) 1,6—2
яйцо (желток) 1,95
окунь 1,9
сыр (гауда) 1,54
карп 1,5
креветки 1,1
треска 0,91
яйцо куриное 0,89
сыр (чеддер) 0,83
творог 0,45
цыплята-бройлеры 0,2—0,7
молоко 0,4
йогурт 0,4—0,7
сметана 0,4

Веганам надо особенно относиться к достаточности потребления этого витамина, так как ввиду отсутствия его в растительной пище им необходимо употреблять витаминные добавки или обогащённые витамином продукты [3] .

Абсорбция и распределение

Всасывание B12 в организме происходит двумя путями — с использованием внутреннего фактора Кастла может всасываться из кишечника 1—2 мкг в течение нескольких часов, второй путь — путём диффузии, при этом поглощается примерно 1 % не использованного по первому пути B12.

В желудке желудочный сок растворяет связанный с белками пищи B12. Формы в таблетках могут проходить через желудок, но для всасывания свободного B12 (не связанного с белками пищи) желудочный сок не нужен. В желудке вырабатывается внутренний фактор Кастла, необходимый для всасывания B12 в кишечнике. R-протеин (другие названия — гаптокоррин и кобалофилин) — связывающий B12 белок слюны, но действовать он начинает в желудке после того, как желудочный сок высвободит B12 из белкового комплекса, тогда этот протеин связывается с ним для того, чтобы сам B12 также не был разрушен желудочным соком. Затем B12 соединяется с внутренним фактором Кастла — ещё одним связывающим белком, который синтезируется париетальными клетками желудка, его выработка стимулируется гистамином, гастрином, пентагастрином и непосредственно пищей. В двенадцатиперстной кишке протеазы высвобождают B12 из комплекса с R-пептидом, затем B12 связывается с внутренним фактором, и только в таком связанном с внутренним фактором виде он распознается рецепторами поглощающих энтероцитов подвздошной кишки. Внутренний фактор защищает B12 от поедания кишечными бактериями.

Поражение любого звена этой цепи может приводить к нарушению всасывания и дефициту B12. При злокачественной анемии существует недостаток внутреннего фактора из-за аутоимунного атрофического гастрита, при котором организм вырабатывает антитела против париетальных клеток. У пожилых из-за снижения кислотности желудочного сока, снижения функции обкладочных клеток высок риск развития дефицита B12. При этом до 100 % B12, поступившего с пищей, выводится с калом, тогда как в норме этот процент не более 60 %.

После того, как комплекс B12/внутренний фактор распознан специальными рецепторами энтероцитов подвздошной кишки, он поступает в портальный кровоток. Здесь он соединяется с транскобаламином II, обслуживающим транспорт по плазме. Наследственные дефекты выработки транскобаламина, а также рецепторов к нему могут также быть причиной дефицита B12, таких как мегалобластная анемия — и в некоторых случаях при этом в крови может определяться нормальный уровень B12. Далее из плазмы комплекс транскобаламин II/B12 захватывается рецепторами клеток, поступает внутрь клетки и тут наконец B12 высвобождается, а транскобаламин идёт в лизосомы.

Верхний предел поглощения B12 в нормальных условиях составляет 1,5 мкг при поступлении с пищей 5—50 мкг.

Общее количество B12, содержащегося в теле человека, равно 2—5 мг у взрослых. Около 50 % хранится в печени. Примерно 0,1 % в день от этого количества теряется через выделение в кишечнике, в основном с желчью, и большая часть (но не всё) реабсорбируется.

При поступлении B12 выше связывающей способности избыток выводится с мочой.

Благодаря чрезвычайно эффективной энтерогепатической циркуляции печень может хранить запас B12 на 3—5 лет. Поэтому недостаток этого витамина встречается редко. Скорость изменения уровня B12 зависит от того, сколько B12 поступает из рациона, сколько секретируется (выводится) и сколько поглощается. У детей раннего возраста дефицит B12 может проявиться гораздо быстрее.

Псевдовитамин B12

Под термином «псевдовитамин B12» подразумевают похожие на этот витамин вещества, обнаруженные в некоторых живых организмах, например, в цианобактериях (ранее известны как сине-зелёные водоросли) рода Спирулина. Важно отметить, что подобные витаминоподобные вещества не обладают витаминной активностью для организма человека [4] [5] . Более того, эти вещества могут представлять определённую опасность для вегетарианцев, пытающихся с их помощью восполнить дефицит витамина, так как показано в опытах in vitro, что они блокируют метаболизм клеток молочной железы человека [5] . Также их наличие в крови показывает при анализе нормальную концентрацию витамина B12, хотя эти соединения не имеют витаминной активности, что может привести к ошибочному диагнозу и, в результате — к неправильному лечению пернициозной анемии.

Источник

Adblock
detector