Витамин с энциклопедия для детей
Лунин прав. Он обратил внимание на то, что куры, питавшиеся на тюремном дворе отбросами пищи заключенных, главным образом полированным рисом, страдают параличами. Признаки их заболевания очень напоминали распространенную в то время в странах Азии болезнь — бери-бери.
В 1911 г. польский химик Казимир Функ выделил из рисовых отрубей вещество, излечивающее параличи голубей, питавшихся только полированным рисом. Химический анализ этого вещества показал, что в его состав входит азот. Открытое им вещество Функ назвал витамином (от слов «вита» — жизнь и «амин»— содержащий азот). Правда, потом оказалось, что не все витамины содержат азот, но старое название, как это часто бывает в жизни, осталось. (Ведь мы до сих пор говорим «стрелять», а не «пулять», хотя стрелу давным-давно заменила пуля.)
Витамины — это биологически активные вещества, действующие в очень незначительных количествах. Они способствуют нормальному протеканию биохимических процессов в организме, т. е. обмену веществ.
Витамины близки к ферментам, но ферменты образуются клетками и тканями нашего организма, а витамины поступают только с пищей.
Витамины входят в состав почти всех ферментов, которые, как вы уже знаете, являются катализаторами, т. е. ускорителями всех процессов обмена веществ. Следовательно, они необходимы для нормального обмена веществ в организме.
Открыто уже около 30 витаминов. Обозначаются они специальными названиями или буквами латинского алфавита — А, В, С, D, Е и т. д.
Ученые много работают над тем, чтобы полностью выяснить действие витаминов на организм, определить их химические формулы и получать синтетическим путем.
Открытие и получение некоторых витаминов дало врачам могучее средство для лечения не только тех болезней, которые возникают от авитаминоза, т. е. недостатка витаминов в организме, но и многих других.
Все витамины делятся на две большие группы — растворимые в воде и растворимые в жирах. Водорастворимые витамины: — это все витамины группы В и витамин С, а жирорастворимые — A, D, E и К.
Витамин А. Дошедшие до нас древнейшие источники медицины говорят о том, что у некоторых людей еще в те времена наблюдалась странная болезнь: днем, при ярком свете, эти люди видели хорошо, а с наступлением сумерек почти совсем теряли зрение. Эту болезнь назвали ночной или «куриной» слепотой. Еще за 1500 лет до н. э. древние китайские врачи рекомендовали больным употреблять в пищу печень. Многим это помогало, но только в 30-х годах нашего века было установлено, что в печени и в жирах содержится специальное вещество, названное витамином А. Многочисленные исследования подтвердили, что витамин А очень важен для большинства жизненных функций организма. Он участвует в окислительно-восстановительных реакциях, в обмене белков, углеводов и минеральных солей, воздействует на деятельность желез внутренней секреции. Но самую главную роль витамин А выполняет в жировом обмене, в формировании костного скелета, в стимуляции процессов роста организма, в повышении защитных свойств кожи и слизистых оболочек различных органов человека, в том числе и глаз.
Витамин А содержится главным образом в жире печени трески, морского окуня, в сливочном масле, яичном желтке, молоке, сливках, сметане.
В продуктах растительного происхождения витамин А находится в виде каротина — желтого пигмента, которому морковь обязана своим цветом. Каротин, попадая в организм человека, превращается там в витамин А.
Особенно много каротина в моркови, тыкве, шпинате, салате, томатах, абрикосах, персиках. Суточная потребность организма в витамине А—1,5—2,5 мг.
Витамин D. В 1650 г. английский врач Глиссон описал болезнь, наблюдавшуюся у детей в графствах Дорсет и Сомерсет. Он назвал ее рахитом.
При рахите происходит искривление костей ног и грудной клетки, дети отстают в развитии и часто болеют инфекционными болезнями.
Теперь мы знаем, что рахит развивается при недостатке в организме витамина D. Он регулирует обмен кальция и фосфора. Если этого витамина не хватает, из организма выводится большое количество солей кальция и фосфора. Костная ткань, которая является почти единственным местом их накопления, быстро начинает терять кальций и фосфор. Кости от этого становятся мягкими, искривляются и легко ломаются. Витамин D повышает всасывание кальция и фосфора из кишечника и предупреждает, таким образом, расход этих солей из костной системы.
Источник
ВИТАМИНЫ
ВИТАМИНЫ (лат. vita жизнь + амин[ы]) — пищевые вещества, необходимые для поддержания жизненных функций. По строению являются низкомолекулярными соединениями различной хим. природы. Организм человека и животных не синтезирует В. или синтезирует в недостаточном количестве и поэтому должен получать их в готовом виде. В. требуются организму от нескольких микрограммов до нескольких миллиграммов в день (см. табл.). В отличие от других незаменимых факторов питания (незаменимые аминокислоты, ненасыщенные жирные кислоты и др.), В. не являются пластическим материалом или источником энергии и участвуют в обмене веществ преимущественно не как субстраты биохим, реакций, а как участники механизмов биокатализа и регуляции отдельных биохим, и физиол, процессов.
Недостаток В. в пище или изменение процессов их усвоения приводит к нарушениям обмена веществ и в конечном счете к развитию гипо- и авитаминозов (см. Витаминная недостаточность).
Открытие В. тесно связано с изучением роли отдельных пищевых веществ в обеспечении полноценного питания. Во второй половине 19 в. считалось, что для нормального функционирования организма достаточно определенного содержания в пище белков, жиров, углеводов, минеральных солей и воды.
В 1880 г. русский исследователь Н. И. Лунин установил, что в пищевых продуктах имеются еще неизвестные факторы питания, необходимые для жизни. Он показал, что белые мыши, получавшие цельное молоко, росли хорошо и были здоровы, но погибали, когда их кормили смесью из основных составных частей молока: казеина, жира, молочного сахара, солей и воды. Выводы Н. И. Лунина были в дальнейшем подтверждены С. А. Сосиным (1891), а в 1906 — 1912 гг. Ф. Гопкинсом.
В 1897 г. голл. врач Эйкман (Ch. Eijkman) установил, что у кур, получавших в пищу полированный рис, развивалось сходное с бери-бери заболевание, однако они выздоравливали после того, как им давались рисовые отруби.
По предложению польского ученого К. Функа (1911 — 1912), работавшего над выделением активного начала рисовых отрубей и обнаружившего наличие в них аминогруппы, все вещества подобного рода стали называть витаминами («жизненными аминами»).
Известно около двух десятков веществ, которые могут быть отнесены к В. Принято различать водорастворимые и жирорастворимые В. К первым относятся аскорбиновая к-та (витамин С), а также витамины группы В.: тиамин (витамин B1), рибофлавин (витамин В2), пиридоксин (витамин B6), кобаламины (витамин B12), ниацин (витамин PP, никотиновая к-та), фолацин (фолиевая к-та), пантотеновая к-та и биотин. К жирорастворимым В. относят ретинол (витамин А), кальциферолы (витамин D), токоферолы (витамин Е) и филлохиноны (витамин К). Наряду с В., необходимость которых для человека и животных бесспорно установлена, а дефицит приводит к явлениям витаминной недостаточности, имеются и другие биологически активные вещества, функции которых носят не столь специфический характер. Эти вещества могут быть причислены к витаминоподобным соединениям. К ним обычно относят биофлавоноиды, холин, инозит, липоевую, оротовую, пангамовую и парааминобензойную кислоты. Парааминобензойная к-та является фактором роста для некоторых микроорганизмов, синтезирующих из нее фолиевую к-ту. Для человека и животных парааминобензойная к-та биологически неактивна, т. к. они не способны превращать ее в фолиевую к-ту.
Целый ряд В. представлен не одним, а несколькими соединениями, обладающими сходной биол, активностью. Примером может служить группа витамина B6, включающая пиридоксин, пиридоксаль и пиридоксамин. Для обозначения подобных групп родственных соединений в соответствии с рекомендациями Международного союза специалистов по питанию (1969) используются буквенные обозначения (витамины A, D и т. п.). Для обозначения индивидуальных соединений, обладающих витаминной активностью, рекомендуется давать рациональные названия, отражающие их хим. сущность, напр, ретиналь (альдегидная форма витамина А), эргокальциферол и холекальциферол (формы витамина D). Хим. строение известных В. полностью установлено, большинство из них получено путем хим. синтеза. Химический, а также микробиол, синтез является основой современного промышленного производства большинства В.
Кроме В., известны провитамины— соединения, которые, не являясь витаминами, могут служить предшественниками их образования в организме. К ним относятся каротины, расщепляющиеся в организме с образованием ретинола (витамина А), некоторые стерины (эргостерин, 7-дегидрохоле стерин и др.), превращающиеся в витамин D.
Некоторые производные В. с замещенными функциональными группами оказывают на организм противоположное по сравнению с В. действие, т. е. являются антивитаминами. Проникая в клетки, эти вещества вступают в конкурентные отношения с В., в частности при биосинтезе коферментов и образовании активных ферментов. Заняв место В. в структуре фермента, антивитамины вследствие различий в строении не могут выполнять их функции. К антивитаминам относят также вещества, связывающие или разрушающие В. (см. Авидин, Тиаминаза). Ряд антивитаминов обладает антимикробной активностью и применяется в качестве химиотерапевтических средств, как, напр., сульфаниламидные препараты.
Специфическая функция витаминов группы В в организме состоит в том, что из них образуются коферменты (см.) и простетические группы ферментов, осуществляющие многие важнейшие реакции обмена веществ. Так, тиамин (витамин В1) превращается в организме в тиамин-дифосфат (кокарбоксилаза), являющийся коферментом энзиматических систем, осуществляющих окислительное декарбоксилирование α-кетокислот.
Связанные с различными В. ферменты принимают участие в осуществлении многих важнейших процессов обмена веществ: энергетическом обмене (витамины B1 и B2), биосинтезе и превращениях аминокислот (витамины B6 и B12), жирных кислот (пантотеновая к-та), пуриновых и пиримидиновых оснований (фолиевая к-та), образовании многих физиологически важных соединений (ацетилхолина, стероидов) и др. Коферменты и простетические группы, а тем более соответствующие В., сами по себе каталитической активностью не обладают и приобретают ее лишь при взаимодействии со специфическими белками — апоферментами.
Введение В., в т. ч. в повышенных дозах, не может нормализовать скорость связанной с ним биохимической реакции, если она снижена не из-за недостатка этого В., а в силу каких-либо иных нарушений. С этой точки зрения использование В. в мед. практике в дозировках, значительно превышающих физиол, потребность, не всегда может быть оправдано, а в ряде случаев и небезопасно, поскольку оно может вести к нарушению обмена веществ и гипервитаминозам (см.).
В отличие от витаминов группы В, жирорастворимые витамины ретинол, кальциферолы, токоферолы и филлохиноны, а также аскорбиновая к-та не являются предшественниками коферментов или простетических групп. Функции этих В. различны и связаны с осуществлением процессов фоторецепции (витамин А), свертывания крови (витамин К), всасывания кальция (витамин D).
Необходимым условием реализации специфических функций В. в обмене веществ является нормальное осуществление их собственного обмена: всасывания в кишечнике, транспорта в ткани, превращения в активные формы. Всасывание и перенос В. кровью осуществляются, как правило, с помощью специальных транспортных белков (ретиносвязывающий белок для ретинола, транскобаламины I и II для витамина B12 и т. д.). Превращение В. в активные формы, в частности в коферменты и простетические группы, а также присоединение этих простетических групп к апоферментам осуществляются с помощью специфических ферментов. Так, пиридоксалькиназа катализирует превращение пиридоксаля (одной из форм витамина B6) в его коферментную форму — пиридоксальфосфат. Тиаминпирофосфокиназа осуществляет превращение тиамина в тиаминдифосфат. Нарушение одного из этих процессов, напр., при врожденном или приобретенном дефекте биосинтеза одного из специфических белков, участвующих в обмене того или иного В., делает невозможным выполнение В. своих специфических функций, что ведет к развитию частичной или полной витаминной недостаточности. Примером таких нарушений может служить анемия, развивающаяся при врожденном дефекте всасывания фолиевой к-ты в кишечнике или при генетическом дефекте дигидрофолатредуктазы, превращающей фолиевую к-ту в ее коферментную форму — тетрагидрофолиевую к-ту. Наряду с превращением в активные формы В. подвергаются в организме катаболическим превращениям с образованием неактивных форм, в виде которых они могут выводиться из организма (4-пиридоксиновая к-та из пиридоксина, N1-метилникотинамид из никотин амида и др.).
Недостаточное поступление В. в организм или нарушение их превращения можно определять путем исследования витаминного статуса человека. С этой целью определяют содержание В. и продуктов их обмена в крови, моче, активность ферментов, в состав которых в виде кофермента или простетической группы входит данный В., а также другие биохим, и физиол, показатели, характеризующие специфические функции В.
Методы определения витаминов приведены в статьях, посвященных отдельным витаминам (напр., Аскорбиновая кислота, Ретинол, Тиамин и др.). Применяется также и радиоизотопный метод (см. Витаминная недостаточность, радиоизотопная диагностика).
При помощи гистохимических методов можно выявить наличие в тканях ретинола, рибофлавина и аскорбиновой к-ты.
Определение аскорбиновой к-ты основано на свойстве ее в темноте и на холоду восстанавливать кислые растворы азотнокислого серебра. Существуют различные модификации методов, основанные на обработке кислыми растворами азотнокислого серебра нефиксированных тканевых блоков или свежих замороженных срезов. Предложен также метод обработки лиофилизированных срезов. Однако некоторые исследователи [Даниэлли (J.F. Danielli), Кисель (G. Kiszely) и др.] ставят под сомнение специфичность методов в целом в связи со способностью витамина С к диффузии и, возможно, наличием в тканях других сильных восстановителей серебра. Так, Клара (М. Clara), хотя и считает эти методы пригодными для выявления аскорбиновой к-ты, однако указывает на свойство гранул α-клеток островков поджелудочной железы, вещества энтерохромаффинных клеток, адренохрома, меланинов, нейросекреторных гранул супраоптических и паравентрикулярных ядер гипоталамуса также восстанавливать кислые растворы серебра.
Наибольшей популярностью пользуется метод Бурна (G. Н. Bourne) и метод Жиру (A. Giroud) и Леблона (С. P. Leblond).
Метод Жиру и Леблона позволяет получить тонкие парафиновые срезы, удобные для изучения. Свежий тканевый блок размером 2x3x2 мм помещают на 30—40 мин. в 10% раствор азотнокислого серебра, подкисленного концентрированной уксусной к-той до pH 3,0—4,0; затем раствор сливают и кусочки ткани промывают несколько раз дистиллированной водой и на 30 мин. помещают в 6% раствор гипосульфита натрия, после чего тканевые блоки обезвоживают спиртами восходящей концентрации и по обычной схеме заключают в парафин. Все процедуры, за исключением заливки в парафин, проводят в темноте. Полученные парафиновые срезы слегка подкрашивают смесью метилового зеленого и пиронина. Участки локализации аскорбиновой к-ты имеют вид мелких черных гранул.
Определение рибофлавина основано на восстановлении его водородом (в момент образования) до лейкофлавина, который на воздухе окисляется до родофлавина, имеющего красный цвет. Ткань фиксируют формалином и проводят реакцию на замороженных срезах. Срезы помещают на 30 мин. в 1—2% раствор соляной к-ты, в к-рую добавляют цинковую пыль; затем их промывают в воде и в течение нескольких часов выдерживают в чашке Петри или на часовом стекле на воздухе и заключают в глицерин-желатину. Флавопротеины окрашиваются в красный цвет.
Выявление витамина А основано на его свойстве давать яркую зеленую флюоресценцию в ультрафиолетовых лучах с длиной волны 365 нм. Свежие тонкие тканевые блоки фиксируют 10% раствором холодного формалина не более чем на 10—12 час. Затем немедленно готовят замороженные срезы, которые изучают в воде. Свечение исчезает через 10—60 сек. (следует иметь в виду, что стойкое свечение обусловлено не витамином А). Для контроля срезы обрабатывают раствором соляной к-ты.
Источник