Витамин Е. Химическая природа, биологическая роль и механизм действия.
Поможем написать любую работу на аналогичную тему
Витамин Е был выделен из масла зародышей пшеничных зёрен и получил название токоферол. Наибольшую биологическую активность проявляет α-токоферол.
Источники витамина Е для человека — растительные масла, салат, капуста, семена злаков, сливочное масло, яичный желток.
Суточная потребность взрослого человека в витамине примерно 5 мг.
По механизму действия токоферол является биологическим антиоксидантом. Он ингибирует, свободнорадикальные реакции в клетках и таким образом препятствует развитию цепных реакций перекисного окисления ненасыщенных жирных кислот в липидах биологических мембран и других молекул, например ДНК.
Токоферол повышает биологическую активность витамина А, защищая от окисления ненасыщенную боковую цепь. Известно положительное влияние витамина Е при лечении нарушения процесса оплодотворения, при повторяющихся непроизвольных абортах, некоторых форм мышечной слабости и дистрофии. Показано применение витамина Е для недоношенных детей и детей, находящихся на искусственном вскармливании, так как в коровьем молоке в 10 раз меньше витамина Е, чем в женском. Дефицит витамина Е проявляется развитием гемолитической анемии, возможно из-за разрушения мембран эритроцитов в результате ПОЛ.
Витамин Е действует как антиоксидант, предотвращая образование в клетках токсичных продуктов перекисного окисления липидов.
Витамин К. Химическая природа, недостаточность, роль, антигемморагические лекарственные препараты.
Витамин К относится к группе липофильных (жирорастворимых) и гидрофобных витаминов, необходимых для синтеза белков, обеспечивающих достаточный уровень коагуляции. Химически, является производным 2-метил-1,4-нафтохинона.
Играет значительную роль в обмене веществ в костях и в соединительной ткани, а также в здоровой работе почек. Во всех этих случаях витамин участвует в усвоении кальция и в обеспечении взаимодействия кальция и витамина D. В других тканях, например, в лёгких и в сердце, тоже были обнаружены белковые структуры, которые могут быть синтезированы только с участием витамина К. Химическое строение. В природе найдены только два витамина группы К: выделенный из люцерны витамин K1 и выделенный из гниющей рыбной муки K2.
Витамин K участвует в карбоксилировании остатков глутаминовой кислоты в полипептидных цепях некоторых белков. В результате такого ферментативного процесса происходит превращение остатков глутаминовой кислоты в остатки гамма-карбоксилглутаминовой кислоты (сокращенно Gla-радикалы). Остатки гамма-карбоксилглутаминовой кислоты (Gla-радикалы), благодаря двум свободным карбоксильным группам, участвуют в связывании кальция. Gla-радикалы играют важную роль в биологической активности всех известных Gla-белков.
В настоящее время обнаружены 14 человеческих Gla-белков, играющих ключевые роли в регулировании следующих физиологических процессов:
свёртывание крови (протромбин (фактор II), факторы VII, IX, X, белок C, белок S и белок Z).
метаболизм костей (остеокальцин).
Некоторые бактерии, такие как кишечная палочка, найденная в толстом кишечнике, способны синтезировать витамин K2 , но не витамин K1. В этих бактериях
Препараты: Фитоменадион (Синонимы: Канавит, Мефитон, Филлохинон, Фимедион, Эвлевен К и др.) Викасол (Синоним: Менадион).
Источник
Витамин Е (токоферол, антистерильный)
Источники
Растительные масла (кроме оливкового), пророщенное зерно пшеницы, бобовые, яйца.
Cуточная потребность
Строение
Молекула токоферола состоит из хроманольного кольца с HO- и CH3-группами и изопреноидной боковой цепью. Различают несколько форм витамина E, характеризующихся разной биологической активностью (в зависимости от числа CH3-групп и наличия двойной связи в боковой цепи).
Строение α-токоферола
Строение токотриенола
(R1, R2, R3 — метильные группы, которые могут
присутствовать в разном сочетании)
Биохимические функции
Витамин, встраиваясь в фосфолипидный бислой мембран, выполняет антиоксидантную функцию , т.е. препятствует развитию свободнорадикальных реакций. При этом:
1. Лимитирует свободнорадикальные реакции в быстроделящихся клетках – слизистые оболочки, эпителий, клетки эмбриона. Этот эффект лежит в основе положительного действия витамина в репродуктивной функции у самцов (защита сперматогенного эпителия) и у самок (защита плода).
2. Защищает витамин А от окисления, что способствует проявлению ростстимулирующей активности витамина А.
3. Защищает ненасыщенные жирнокислотные остатки мембранных фосфолипидов от перекисного окисления и, следовательно, любые клетки от разрушения.
Гиповитаминоз E
Причина
Кроме пищевой недостаточности и нарушения всасывания жиров, причиной гиповитаминоза Е может быть недостаток аскорбиновой кислоты.
Клиническая картина
Укорочение времени жизни эритроцитов in vivo, пониженная устойчивость и их легкий гемолиз, развитие анемии, увеличение проницаемости мембран, мышечная дистрофия, слабость. Также со стороны нервной ткани отмечены арефлексия, снижение проприоцептивной и вибрационной чувствительности, парез взора вследствие поражения задних канатиков спинного мозга и миелиновой оболочки нервов.
В эксперименте у животных при авитаминозе развивается атрофия семенников и рассасывание плода (греч. tokos – потомство, phero – несу, т.е. антистерильный), размягчение мозга, некроз печени, жировая инфильтрация печени.
Источник
Витамин Е
Токоферол
Общие сведения
История открытия
В 1922 г. Эванс и Бишоп (H.M. Evans, K.S. Bishop) опубликовали первое сообщение о результатах изучения бесплодия у животных, выращенных на искусственной диете. Ученые высказали предположение, что причиной патологии является пищевая недостаточность. Многочисленными исследованиями было установлено, что наибольшей лечебной активностью обладает сливочное масло, видимо, за счет содержания в нем фактора, необходимого для плодовитости. Этот фактор был найден также в листьях салата, зернах пшеницы, овса и других злаков и получил название «витамин Е».
В 1936 г. Эванс и Эмерсоны (Evans H.M., Emerson O.H., Emerson G.A.) опубликовали сообщение о выделенном ими веществе, названном «α-токоферол» (альфа-токоферол). Оно обладало свойствами витамина Е. Название образовано от греческих слов «tacos» – «роды» и «phero» – «производить», а окончание «ol» возникло от химического обозначения для спирта, которым является витамин Е с точки зрения химического строения. Окончательно химическая структура витамина Е была расшифрована к 1939 г. Витамин Е – это группа соединений, имеющих сходные биологические свойства. Они относятся к токоферолам. Известны 8 токоферолов, их изомеры и синтетические производные (α-, β-, γ-, δ-токоферол и α-, β-, γ-, δ-токотриенол). Наиболее значительной активностью обладает α-токоферол.
Физико-химические свойства
При комнатной температуре токоферолы представляют собой светло-желтые прозрачные масла. Некоторые из них при низкой температуре кристаллизуются. Токоферолы нерастворимы в воде, хорошо растворимы в органических растворителях (хлороформ, эфир, гексан, петролейный эфир), несколько хуже – в ацетоне и спирте. Устойчивы к действию кислот и щелочей. Сохраняют стабильность при нагревании. Чувствительны к ультрафиолету, кислороду воздуха и другим окислителям. В вакууме и атмосфере инертного газа стабильны при нагревании до 100 °С.
Токоферолы легко образуют сложные эфиры с различными кислотами, которые полностью сохраняют биологическую активность и при этом отличаются значительно большей устойчивостью к окислению.
Токоферолы легко вступают во взаимодействие со свободными радикалами и активными формами кислорода, чем объясняется их антиоксидантное действие. Молекулярная масса α-токоферола 430,7, β-, γ-токоферола 416,7. Температура плавления α-токоферола 0 °С, β-токоферола 3 °С.
Фармакокинетика
В отличие от других жирорастворимых витаминов А, D, К, витамин Е не накапливается в жировой ткани организма. Примерно половина витамина Е, содержащегося в пище, всасывается из кишечника, так как абсорбция витамина Е требует присутствия жирных кислот. Эмульгирование желчью с образованием мицелл жира и растворенного в нем витамина Е происходит в двенадцатиперстной кишке. При всасывании происходит расщепление токоферола ацетата до свободного токоферола. Затем токоферол в составе лимфы попадает в лимфатическую систему и транспортируется вместе с хиломикронами. Для наиболее полного всасывания витамина Е в кишечнике необходимо присутствие желчи и секрета поджелудочной железы. При нарушении желчеоттока всасывание витамина Е замедляется.
У здоровых людей абсорбируется при приеме пищи 51–86 % α-токоферола, у больных с синдромом мальабсорбции – 31–83 %. При раке желудка – 21 %. Депонируется витамин Е в гипофизе, семенниках, надпочечниках. Выводится с желчью (до 90 %).
Источники
Таблица 1. Содержание витамина Е в растительных продуктах
Продукт
Содержание витамина Е, мг/100 г
Источник
Витамин E, химическое строение, потребность, биологическая роль
суточной потребности в витамине Е,
которая по приблизительным подсчетам составляет около 5 мг
Витамин К, химическая природа, потребность, биологическая роль.
Общая характеристика группы водорастворимых витаминов.
¡ Не накапливаются в организме человека;
¡ Для них более характерны гипо(а)витаминозы;
¡ Являются составной частью активного центра ферментов;
¡ Часть из них требуют особых механизмов всасывания.
17. Коферментная функция витаминов группы В (схема).
18. Витамин В1, химическое строение, потребность, биологическая роль. Проявления недостаточности витамина В1.
|
Суточного потребления тиамина для отдельных групп населения составляют от 1,2 до 2,2 мг
Витамин В2, химическое строение, потребность, биологическая роль, проявления гипо- и авитаминоза.
Суточная потребность взрослого человека в рибофлавине составляет 1,7 мг,
20. Витамин В3, химическое строение, потребность, биологическая роль, проявления гипо- и авитаминоза.
Пантотеновая кислота
в пантотеновой кислоте для взрослого человека составляет 3–5 мг.
При недостаточности или отсутствии пантотеновой кислоты у человека
и животных развиваются дерматиты, поражения слизистых оболочек, дистрофические изменения желез внутренней секреции (в частности, над-
почечников) и нервной системы (невриты, параличи), изменения в сердце
и почках, депигментация волос, шерсти, прекращение роста, потеря аппе-
тита, истощение, алопеция. Все это многообразие клинических проявлений
пантотеновой недостаточности свидетельствует об исключительно важной
биологической роли ее в метаболизме.
Биологическая роль-перенос ацильных групп
21. Витамин PP (B5), химическое строение, биологическая роль, проявления недостаточности
Суточная потребность для взрослого человека составляет 18 мг
Наиболее характерными признаками авитаминоза РР, т.е. пеллагры (от
итал. pelle agra – шершавая кожа), являются поражения кожи (дерматиты),
пищеварительного тракта (диарея) и нарушения нервной деятельности
Дерматиты чаще всего симметричны и поражают те участки кожи,
которые подвержены влиянию прямых солнечных лучей: тыльную по-
верхность кистей рук, шею, лицо; кожа становится красной, затем ко-
ричневой и шершавой. Поражения кишечника выражаются в развитии
анорексии, тошнотой, болями в области живота, поносами. Диарея при-
водит к обезвоживанию организма. Слизистая оболочка толстой кишки
сначала воспаляется, затем изъязвляется. Специфичными для пеллагры
являются стоматиты, гингивиты, поражения языка со вздутием и тре-
щинами. Поражения мозга проявляются головными болями, головокру-
жением, повышенной раздражимостью, депрессией и другими симптомами,
включая психозы, психоневрозы, галлюцинации и др. Симптомы пеллагры
особенно резко выражены у больных с недостаточным белковым питанием.
Установлено, что это объясняется недостатком триптофана, который яв-
ляется предшественником никотинамида, частично синтезируемого в тка-
нях человека и животных, а также недостатком ряда других витаминов.
Биологическая роль. Витамин РР входит в состав НАД или НАДФ,
являющихся коферментами большого числа обратимо действующих в
окислительно-восстановительных реакциях дегидрогеназ Показано, что ряд дегидрогеназ использует только НАД и НАДФ
(соответственно малатдегидрогеназа и глюкозо-6-фосфатдегидрогеназа),
другие могут катализировать окислительно-восстановительные реакции
в присутствии любого из них (например, глутаматдегидрогеназа; см. главу
12). В процессе биологического окисления НАД и НАДФ выполняют роль
промежуточных переносчиков электронов и протонов между окисляемым
субстратом и флавиновыми ферментами.
22. Витамин B6, химическое строение, биологическая роль, проявления авитаминоза.
взрослый человек должен получать в сутки около 2 мг витамина В6
Биологическая роль. Оказалось, что, хотя все три производных 3-окси-
пиридина наделены витаминными свойствами, коферментные функции
выполняют только фосфорилированные производные пиридоксаля и пи-
Фосфорилирование пиридоксаля и пиридоксамина является фермен-
тативной реакцией, протекающей при участии специфических киназ. Синтез
пиридоксальфосфата, например, катализирует пиридоксалькиназа, которая
наиболее активна в ткани мозга. Эту реакцию можно представить сле-
Пиридоксаль + АТФ –> Пиридоксальфосфат + АДФ.
Доказано, что в животных тканях происходят взаимопревращения
пиридоксальфосфата и пиридоксаминфосфата, в частности в реакциях
трансаминирования и декарбоксилирования аминокислот (см. главу 12).
Следует отметить, что в выяснение биологической роли витамина В6
и пиридоксальфосфата в азотистом обмене существенный вклад внесли
А.Е. Браунштейн, С.Р. Мардашев, Э. Снелл, Д. Мецлер, А. Майстер и др.
Известно более 20 пиридоксалевых ферментов, катализирующих ключевые
реакции азотистого метаболизма во всех живых организмах. Так доказано,
что пиридоксальфосфат является простетической группой аминотранс-
фераз, катализирующих обратимый перенос аминогруппы (NH2
от аминокислот на α-кетокислоту, и декарбоксила з аминокислот, осу-
ществляющих необратимое отщепление СО2
от карбоксильной группы
аминокислот с образованием биогенных аминов. Установлена кофер-
ментная роль пиридоксальфосфата в ферментативных реакциях неокисли-
тельного дезаминирования серина и треонина, окисления триптофана,
кинуренина, превращения серосодержащих аминокислот, взаимопревраще-
ния серина и глицина (см. главу 12), а также в синтезе δ-аминолевулиновой
кислоты, являющейся предшественником молекулы гема гемоглобина, и др.
Пиридоксальфосфат ПиридоксаминфосфатПиридоксин относится к витаминам, коферментная роль которых изучена
наиболее подробно. В последние годы число вновь открытых пиридокса-
левых ферментов быстро увеличивалось. Так, для действия гликогенфос-
форилазы существенной оказалась фосфорильная, а не альдегидная группа
пиридоксальфосфата. Вследствие широкого участия пиридоксальфосфата
в процессах обмена при недостаточности витамина В6
образные нарушения метаболизма аминокислот.
Недостаточность витамина В6
наиболее подробно изучена на крысах,
у которых самым характерным признаком является акродиния, или спе-
цифический дерматит с преимущественным поражением кожи лапок,
хвоста, носа и ушей. Отмечаются повышенное шелушение кожи, выпадение
шерсти, изъязвление кожи конечностей, заканчивающееся гангреной паль-
цев. Эти явления не поддаются лечению витамином РР, но быстро
проходят при введении пиридоксина. При более глубоком авитаминозе В6
у собак, свиней, крыс и кур отмечаются эпилептиформные припадки
с дегенеративными изменениями в ЦНС.
Пиридоксаль ПиридоксаминУ человека недостаточность витамина В6
встречается реже, хотя не-
которые пеллагроподобные дерматиты, не поддающиеся лечению нико-
тиновой кислотой, легко проходят при введении пиридоксина. У детей
грудного возраста описаны дерматиты, поражения нервной системы (вклю-
чая эпилептиформные припадки), обусловленные недостаточным содер-
жанием пиридоксина в искусственной пище. Недостаточность пиридоксина
часто наблюдается у больных туберкулезом, которым с лечебной целью
вводят изоникотинилгидразид (изониазид), оказавшийся, как и дезокси-
пиридоксин, антагонистом витамина В6
Из биохимических нарушений при недостаточности витамина В6
отметить гомоцистинурию и цистатионинурию, а также нарушения обмена
триптофана, выражающиеся в повышении экскреции с мочой ксантуреновой
кислоты и снижении количества экскретируемой кинуреновой кислоты
23. Витамин B9, химическое строение, биологическая роль, проявления недостаточности. Антивитамины фолиевой кислоты
Суточная потребность в свободной фолиевой кислоте для взрослого человека составляет 1-2 мг.
|
Недостаточность фолиевой кислоты трудно
вызвать даже у животных без предварительного подавления в кишечнике
роста микроорганизмов, которые синтезируют ее в необходимых коли-
чествах; авитаминоз обычно вызывают введением антибиотиков и скарм-
ливанием животным пищи, лишенной фолиевой кислоты. У обязьян фо-
лиевая недостаточность сопровождается развитием специфической анемии;
у крыс сначала развивается лейкопения, а затем анемия. У человека
наблюдается клиническая картина макроцитарной анемии, очень похожая
на проявления пернициозной анемии – следствия недостаточности витамина
, хотя нарушения нервной системы отсутствуют. Иногда отмечается
диарея. Имеются доказательства, что при недостаточности фолиевой
кислоты нарушается процесс биосинтеза ДНК в клетках костного мозга,
в которых в норме осуществляется эритропоэз. Как следствие этого
в периферической крови появляются молодые клетки – мегалобласты – с
относительно меньшим содержанием ДНК.
24. Витамин B12, химическая природа, роль в процессах метаболизма, проявление недостаточности.
Источник