Меню

Трансформаторное масло вред для здоровья

Воздействие вредных веществ (трансформаторное масло);

ЗАДАНИЕ ДЛЯ РАЗДЕЛА

«СОЦИАЛЬНАЯ ОТВЕТСТВЕННОСТЬ»

Группа ФИО
4ТМ41 Отемуратов Айдын Акимжанулы
Институт ИФВТ Кафедра ВЭСЭ
Уровень образования магистратура Направление/специальность электроэнергетика
Исходные данные к разделу «Социальная ответственность» :
1. Характеристика объекта исследования (вещество, материал, прибор, алгоритм, методика, рабочая зона) и области его применения Объектом исследования являются горные породы, разных видов. Основное оборудование для исследования; Зарядное устройство, генератор импульсных напряжение (ГИН), камера для создания высоких давлении (7 МПа). Методика исследования; на горные породы будет подаваться импульсное напряжение 250 – 300 кВ. Максимальное давление, приложенное на горные породы 7МПа Рабочей зоной является лаборатория №11 ИФВТ ТПУ. Исследования и экспериментальные работы ведутся высоковольтном зале.
Перечень вопросов, подлежащих исследованию, проектированию и разработке:
1. Производственная безопасность 1.1. Анализ выявленных вредных факторов при разработке и эксплуатации проектируемого решения в следующей последовательности: — физико-химическая природа вредности, её связь с разрабатываемой темой; — действие фактора на организм человека; — приведение допустимых норм с необходимой размерностью (со ссылкой на соответствующий нормативно-технический документ); — предлагаемые средства защиты; — (сначала коллективной защиты, затем – индивидуальные защитные средства). 1.2. Анализ выявленных опасных факторов при разработке и эксплуатации проектируемого решения в следующей последовательности: — механические опасности (источники, средства защиты; — термические опасности (источники, средства защиты); — электробезопасность (в т.ч. статическое электричество, молниезащита – источники, средства защиты); — пожаровзрывобезопасность (причины, профилактические мероприятия, первичные средства пожаротушения). Вредные факторы: содержание летучих органических примесей (трансформаторное масло), электромагнитное излучение в широком спектре, шум, неблагоприятные условия микроклимата рабочей зоны. Опасные факторы: электрический ток, пожар, работа с повышенным давлением.
2. Экологическая безопасность: — защита селитебной зоны — анализ воздействия объекта на атмосферу (выбросы); — анализ воздействия объекта на гидросферу (сбросы); — анализ воздействия объекта на литосферу (отходы); — разработать решения по обеспечению экологической безопасности со ссылками на НТД по охране окружающей среды. Негативное воздействие на окружающую среду отсутствует. Все материалы, используемые в сборочных работах, является экологически безопасными
3. Безопасность в чрезвычайных ситуациях: — перечень возможных ЧС при разработке и эксплуатации проектируемого решения; — выбор наиболее типичной ЧС; — разработка превентивных мер по предупреждению ЧС; — разработка действий в результате возникшей ЧС и мер по ликвидации её последствий. Возможные чрезвычайные ситуации при выполнении проекта являются: замыкание остаточных зарядов, воспламенение рабочей жидкости. Превентивные меры по предупреждению ЧС: применение изоляции, недоступность токоведущих частей, изоляция электрических частей от земли. Действия в результате возникшей ЧС и ликвидации ее последствий должны быть описаны в каждой инструкции охраны труда.
4. Правовые и организационные вопросы обеспечения безопасности: — специальные (характерные при эксплуатации объекта исследования, проектируемой рабочей зоны) правовые нормы трудового законодательства; — организационные мероприятия при компоновке рабочей зоны. Расстояния между рабочими зонами, параметры освещения и микроклимата соответствуют нормам. Эффективный и безопасный труд возможен только в том случае, если производственные условия на рабочем месте отвечают всем требованиям международных стандартов в области охраны труда.

Дата выдачи задания для раздела по линейному графику

Задание выдал консультант:

Должность ФИО Ученая степень, звание Подпись Дата
Ассистент Кырмакова Ольга Сергеевна

Задание принял к исполнению студент:

Группа ФИО Подпись Дата
4ТМ41 Отемуратов Айдын Акимжанулы

Введение

В данном разделе будет рассматриваться безопасность и экологичность исследования процессов разрушения горных пород импульсным напряжением при давлении до 7 МПа.

На данный момент наблюдается увеличение объемов работ горнорудной и нефти газовой промышленности. Возникает необходимость поиска совершенно нового способа бурение, который должен быть экономичнее и эффективнее, по сравнению с традиционными способами бурения. Многим критериям эффективного способа разрушения горных пород и руд отвечает электроимпульсных способ, использующий для разрушения твердых диэлектрических и полупроводящих материалов энергию импульсного электрического разряда при их непосредственном электрическом пробое. При углубление буровой коронки, давление на его конце будет увеличивается. В связи с этим ведутся работы по изучению разрушения горных пород, на импульсным напряжение при повышенных давлениях.

Объектом исследования является горные породы разных видов (песчаник, гранит, известняк). На горные породы будут приложены импульсное напряжения, максимальное давлении 7 МПа. Амплитуда напряжения 250 – 300 кВ. Структурная схема оборудовании необходимых для исследования указанный на рисунке 1.

Рисунок 1. Структурная схема оборудовании для провидения исследования.

Для того чтобы канала разряда внедрился в твердо тело, поверхность твердого тела (образца) должна быть заполнена жидким диэлектриком. В качестве такого диэлектрика был взято трансформаторное масло.

Рабочей зоной является Высоковольтный зал, лабораторий №11, ИФВТ.

Камера для проведения исследования показана на рисунке 2. Камера будет находится под давлением 7 МПа, и будет наполнена трансформаторным маслом.

Рисунок 2. Камера для проведения испытании

1 Высоковольтный ввод; 2 Корпус; 3 Платформа для образцов; 4 Экранирующая сетка и поликарбонатная защита;

Техногенная безопасность

1.1 Анализ выявленных вредных факторов при разработке и эксплуатации проектируемого решения в следующей последовательности:

-воздействие вредных веществ (трансформаторное масло);

— повышенный уровень шума;

— неблагоприятные условия микроклимата рабочей зоны;

Воздействие вредных веществ (трансформаторное масло);

Трансформаторное масло — очищенная фракция нефти, получаемая при перегонке, кипящая при температуре от 300 ° С до 400 ° С. В зависимости от происхождения нефти обладают различными свойствами и эти отличительные свойства исходного сырья отражаются на свойствах масла. Оно имеет сложный углеводородный состав со средним весом молекул 220-340 а.е., и содержит основные компоненты, приведенные в таблице 1.

Таблица 1. Основные компоненты трансформаторного масло [1]

Парафин 10-15%
Нафтены или циклопарафины 60-70%
Ароматические углеводороды 15-20%
Асфальто-смалистые вещества 1-2%
Сернистые вещества 3 кг/м 3 . [2]

Вредное воздействие от трансформаторного масло проявляется в том, что при замене образцов исследования, которые пропитаны трансформаторным маслом (все это происходит вручную) могут пропитается в ткань, кровеносные сосуды человека.

Для защиты человека от вредных факторов, применяется средства индивидуальной защиты; перчатки (ПЕР107).

Таблица 2. Характеристики перчаток ПЕР107

Облив Двойной ПВХ
Основа Х/Б
Артикул ПЕР107
Манжет Резинка

Маслобензостойкие перчатки обладают отличной стойкостью к нефти и нефтепродуктам. Рекомендуются для использования при переноске жирных и покрытых маслами предметов, обслуживании техники. Обеспечивают хороший захват на промасленных поверхностях. Изготавливаются из высококачественного двухслойного ПВХ на трикотажной основе.

Электромагнитное поле

Последствиями воздействия электромагнитного излучения на организм человека являются функциональные нарушения со стороны нервной системы, проявляющиеся в виде вегетативных дисфункций неврастенического и астенического синдрома. Лица, продолжительное время находившиеся в зоне электромагнитного излучения, имеют жалобы на слабость, раздражительность, быструю утомляемость, ослабление памяти, расстройства сна.

Гигиенические нормативы пребывания в электрическом поле, установленные исходя из непосредственного (биологического) воздействия на человека, приведены в таблице 3

Таблица 3. Гигиенические нормативы пребывания в электрическом поле СанПиН 2971-84 [3]

Напряженность, кВ/м (Е) Допустимое время пребывания, мин (Т) Условия работы
До 5 включительно не ограничивается Без средств защиты
20-25
более 25 Один рабочий день С применением специальных средств защиты

Создание безопасных условий для проведения исследовательских работ в условиях влияния действующих электромагнитных полей сводится к обеспечению допустимых уровней напряженности электрического поля и наведенного напряжения на рабочих местах; ограничению времени пребывания в зоне повышенной напряженности; соблюдению нормируемых расстояний до элементов, которые могут оказаться под опасным потенциалом; устройству защитного заземления; применению средств коллективной и индивидуальной защиты.

Так как источник электромагнитных полей находится в металлическом корпусе (Рисунок 2; 2), также изолирован металлической сеткой и поликарбонатным слоем (Рисунок 2; 4), являющимся защитным экраном от электромагнитного поля. В связи с этим величина электромагнитного излучения незначительна Е ≤ 5 кВ/м, нет необходимости в использовании дополнительных средств коллективной и индивидуальной защиты.

Повышенный уровень шума

Вредное воздействие шума не ограничивается влиянием только лишь на органы слуха. Повышенный шумовой раздражитель негативно влияет на нервную систему человека, сердечно – сосудистую систему, вызывает сильное раздражение. Повышенный шум может стать причиной бессонницы, быстрого утомления, агрессивности, влиять на репродуктивную функцию и способствовать серьезному расстройству психики.

Основным источником шума является ГИН, и камера для исследования. Характер шума тональный, в спектре шума имеются явно выраженные дискретные тона. Уровень шума превышает предельно допустимы уровень шума на рабочем месте, Lдоп ≤ 150 дБА [4]. В качестве индивидуальной защиты применяется наушники champion (С1002), которая находится на балансе лабораторий №11, ИФВТ

Соблюдение ПДУ шума не исключает нарушения здоровья у сверхчувствительных лиц.

Источник

Трансформаторное масло – особенности применения и состава

Казалось бы, где масло, а где электроприборы? Тем более трансформаторы, внутри которых блуждают огромные токи, и формируется высокое напряжение. Тем не менее подобные электрические установки работают с применением технических жидкостей, и это отнюдь не антифриз и не дистиллированная вода.

Наверное, все видели огромные трансформаторы на подстанциях, и энергоблоках промышленных предприятий. Все они снабжены расширительными емкостями в верхней части.

Именно в эти бочонки заливается трансформаторное масло. Выглядит это вполне привычно для обывателя: корпус электрической установки (по аналогии картера двигателя автомобиля), внутри расположены рабочие узлы. И все это богатство залито маслом до самого верха. Как мы понимаем, о смазке деталей речь не идет: в трансформаторе нет движущихся частей.

Область применения трансформаторного масла

Для начала, развеем некоторые стереотипы. Существует устойчивое заблуждение, что все жидкости являются проводниками. На самом деле далеко не все, и не так явно, как металлы.

Важное свойство трансформаторного масла – высокое сопротивление электрическому току. Настолько высокое, что жидкость фактически является диэлектриком (в разумных пределах, разумеется).

Такая характеристика, как смазывающая способность, в электрике интересна в последнюю очередь. А вот теплопроводность напротив, очень важна.

О свойствах поговорим отдельно, они вытекают из двух областей применения:

  1. В электрических трансформаторах, масло выполняет роль диэлектрика и средства для эффективного отвода тепла. Всем известно, что электроустановки сильно греются. Воздушное охлаждение не настолько эффективно, поскольку не может обеспечить плотный контакт объекта охлаждения со средой отвода тепла. Трансформаторы приходится делать массивными, с большой площадью рассеивания. Назначение трансформаторного масла – эффективный отвод тепла при относительно компактной конструкции.
    Радиаторы присутствуют, и даже снабжены вентиляторами обдува.

    Но подобная система отвода тепла несоизмерима по габаритам с трансформаторами воздушного охлаждения (в пользу жидкостных).
  2. Кроме того, трансформаторное масло используется в контактных группах выключателей. Разумеется, речь идет не о тех клавишах на стене, которыми вы включаете свет в ванной комнате. Масляные выключатели достигают размеров небольшого дома, и применяются на высоковольтных подстанциях, снабжающих электроэнергией как минимум промышленное предприятие, или целый город.

Эксплуатационные показатели подобных устройств поражают воображение: напряжение несколько сотен тысяч вольт, и сила тока до 50 тысяч ампер.

Масло в этих устройствах имеет две функции. Разумеется, изоляционные свойства, как и в трансформаторах. Но главное назначение – эффективное гашение электрической дуги.

При размыкании (замыкании) контактов на электрических коммутационных устройствах с такими параметрами, возникает электрическая дуга, способная разрушить контактную группу за несколько циклов.

Электрическая дуга при размыкании контактов (происшествие на подстанции) — видео

Однако проблемы возникают лишь в воздушной среде. Если внутренняя полость заполнена трансформаторным маслом – искрения и дуги не возникнет.

Технические характеристики трансформаторного масла

Так же, как и минеральное моторное, трансформаторное масло производится путем перегонки подготовленной сырой нефти (очищенной), методом кипячения сырья. После возгонки при температуре 300°C — 400°C, остается так называемый соляровый дистиллят.

Собственно, эта субстанция является основой для получения трансформаторного масла. Во время очистки, снижается насыщенность ароматическими углеродами и не углеродными соединениями. В результате повышается стабильность продукта.

При возгонке и выделении дистиллята, можно управлять физическими и химическими процессами. Манипулируя базовым сырьем и технологией, можно менять свойства трансформаторного масла. Они определяются полученным соотношением компонентов:

Интересно, что этот продукт экологически чист. При его производстве, использовании и утилизации, воздействие на природу не выше, чем у исходного сырья (сырой нефти). В состав не включаются добавки, синтезированные искусственным путем.

Как и нефть, масло для трансформаторов и выключателей не токсично (насколько это можно сказать о нефтепродуктах), не разрушает озоновый слой, и бесследно разлагается в природной среде.

Одна из важных характеристик – плотность трансформаторного масла. Типичная величина лежит в диапазоне 0,82 – 0,89 * 10³ кг/м³. Цифры зависят от температуры: рабочий диапазон в пределах 0°C – 120°C.

При нагреве она уменьшается, этот фактор принимается во внимание при проектировании радиаторной системы охлаждения трансформаторов.

Поскольку масла относительно универсальны, эта характеристика может варьироваться в зависимости от потребностей заказчика. Трансформаторные подстанции располагаются в различных климатических зонах, зачастую в условиях крайнего Севера и Сибири.

Не только плотность меняется в зависимости от температуры

Вязкость трансформаторного масла может радикально изменить общие показатели электроустановки.

Показатели ТКп Масло селективной очистки Т-1500У гк вг АГК МВТ
Кинематическая вязкость, им2/с* при температуре
50°С 9 9 9 9 5
40°С 11 3,5
20°С 28
-30°С 1500 1300 1300 1200 1200
-40°С 800 150
Кислотное число, мг КОН/г, не более 0,02 0,02 0,01 0,01 0,01 0,01 0,02
Температура, °С
Вспышки в закрытом тигле, не ниже 135 150 135 135 135 125 95
Застывания, не выше -45 -45 -45 -45 -45 -60 -65

Этот параметр – порождение компромисса. Для обеспечения электрической прочности масла, вязкость должна быть высокой. Практически, как твердый диэлектрик. Но изоляция проводников, это не единственное предназначение рассматриваемой жидкости.

Принцип работы масляного трансформатора — видео

  • Теплоотвод – возможен при достаточно жидком теплоносителе. То есть, для нормального охлаждения электроустановки вязкость должна быть как можно более низкой.
  • Гашение электрической дуги. Как это работает? В обычной воздушной среде, при размыкании (замыкании) контактов под высокой нагрузкой, возникает дуга, подобная сварочной.

Вспышка и воспламенение

Интересный с точки зрения физики процесса, такой параметр, как температура вспышки трансформаторного масла. Для любых нефтепродуктов, это температура воспламенения жидкой среды, при контакте с открытым источником пламени.

Однако внутри трансформатора не создаются условия для горения, по причине отсутствия достаточного количества кислорода. А вот открытое пламя теоретически возможно: если при размыкании контактов образуется кратковременная дуга.

Поэтому в свойства масел закладывается увеличение температуры вспышки. Это значение постепенно уменьшается, по причине дефектов трансформаторного оборудования. При нормальной работе, температура вспышки напротив, увеличивается. Допустимое значение – более 155°C.

Электрическая дуга или как горят трансформаторы — видео

Для понимания механизма – температура вспышки связана с испаряемостью масла. То есть, оно должно быть достаточно жидким, но при этом не переходить в газообразное состояние при нормальных условиях эксплуатации.

Кроме традиционного параметра, есть такое понятие, как температура самовоспламенения, характерное именно для трансформаторов. В нашем случае эта величина составляет 350°C – 400°C.

Если обмотки нагреются до такой температуры – возникает неконтролируемое горение и взрыв трансформатора. К счастью, подобные случаи происходят крайне редко. Разумеется, при условии соблюдения условий эксплуатации.

Поэтому, вместе с подбором качественного масла, необходимо постоянно следить за состоянием электроустановок. При проведении тестовых отборов жидкости, можно понять, какие проблемы есть в самом трансформаторе или высоковольтном выключателе.

После проведенных исследований, оцениваются такие показатели, как преломление вязкости, плотность, диэлектрические свойства, и пр. Результаты сравниваются с табличными значениями, установленными стандартом применения масел.

В таблице показаны основные показатели трансформаторного масла:

Температура t,
°С
Плотность р,
кг/м3
Cp, кДж/(кгК) λ, Вт/(м’К) а-10**8, м2/с μ-10**4, Пас v-10**6, м2/с ß-10**4, К»1 Рг
892,5 1,549 0,1123 8,14 629,8 70:5 6,80 866
10 886.4 1,620 0,1115 7,83 335,5 37,9 6.85 484
20 880,3 1,666 0,1106 7,56 198,2 22,5 6,90 298
30 874,2 1,729 0,1008 7,28 128,5 14.7 6.95 202
40 868,2 1,788 0,1090 7,03 89.4 10,3 7,00 146
50 862,1 1,846 0,1082 6,80 65.3 7,58 7,05 111
60 856,0 1,905 0,1072 6,58 49,5 5,78 7,10 87,8
70 850,0 1,964 0,1064 6,36 38.6 4,54 7,15 71.3
80 843,9 2,026 0,1056 6,17 30.8 3,66 7,20 59,3
90 837.8 2.085 0,1047 6,00 25,4 3,03 7,25 50,5
100 831,8 2,144 0,1038 5,83 21.3 2,56 7,30 43.9
110 825,7 2,202 0,1030 5,67 18.1 2,20 7,35 38,8
120 819,6 2,261 0,1022 5,50 15.7 1,92 7,40 34,9
  • cp — удельная массовая теплоемкость, без изменения рабочего давления;
  • λ – теплопроводность: общий коэффициент;
  • a – температурная проводимость: общий коэффициент;
  • μ — динамический коэффициент вязкости;
  • ν — кинематический коэффициент вязкости;
  • β — объемное расширение: общий коэффициент;
  • Pr — критерий Прандтля.

Технические жидкости для обеспечения работы трансформаторных подстанций закупаются в огромных объемах, это достаточно затратно. Каждая партия тестируется перед использованием, и в процессе работы.

Испытание трансформаторного масла на пробой — видео

Ежегодно, техническая жидкость требует масштабной очистки. Этим занимаются специальные службы. А каждые 5-6 лет, требуется регенерация (практически полная замена масла в электроустановке). Процедура недешевая, но без ее выполнения эксплуатация трансформатора станет небезопасной.

В качестве компромисса, широко применяется восстановление свойств. Отработка сдается на нефтехимическое предприятие, где масло приобретает первоначальные свойства. Стоимость добавленных присадок многократно ниже, в сравнение с полной заменой материала.

Второстепенные характеристики трансформаторного масла

Устойчивость масла к окислению – это не что иное, как противодействие старению. Есть две негативные стороны этого явления:

  1. Связывание молекулами кислорода активных добавок, которые обеспечивают базовые параметры жидкости.
  2. Отложение продуктов окисления на поверхностях деталей трансформатора: обмотках, проводниках, контактных группах. Это приводит к снижению теплоотвода, с последующим закипанием масла в точках соприкосновения.
  3. Зольность – наличие посторонних примесей и причина их появления. После промывки нового масла, в его составе остаются химические моющие средства (это касается и регенерации старой жидкости).

Если их не удалить – образуются зольные фракции, которые оседают на рабочих частях трансформаторов и выключателей. Для борьбы с этим явлением, в масло добавляются присадки, нейтрализующие солевые и мыльные отложения.

Температура текучести (застывания) характеризует превращение жидкости в консистентную смазку. Этот показатель (от — 35°C до — 50°C) применим лишь при холодном пуске электроустановки. Работающий трансформатор сам является источником тепла, и поддерживает жидкость в рабочем состоянии.

Источник

Читайте также:  Значение школы здоровья для больных хобл

Про здоровье и витамины © 2022
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.

Adblock
detector