Меню

Токоферолы витамин е формула

Токоферолы витамин е формула

Токоферола ацетат (Витамин Е)

CAS номер: 7695-91-2
Брутто формула: C31H52O3
Внешний вид: представляет собой прозрачное вязкое масло от бесцветного до желтоватого или желтовато-зеленоватого цвета. Почти без запаха.
Химическое название и синонимы: Tocopheryl acetate, 3,4-Dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-benzopyran-6-yl acetate; Vitamin E acetate
Физико-химические данные:
Молекулярная формула C31H52O3
Молекулярный вес 472.75 г/моль
Плотность 0,96
Температура плавления 2,5-3,5 ºC
Температура кипения 224 ° C при 0,4 гПа (0,3 мм рт.ст.)
1 мг dl-a-токоферола ацетата эквивалентно 1,0 МЕ витамина Е.
Практически не растворим в воде, легко растворяется в этаноле, хлороформе, ацетоне, эфире и растительных маслах.
Стабилен при нормальных температурах и давлениях. Темнеет при воздействии воздуха. Медленно окисляется атмосферным кислородом.
Условия, которых следует избегать: свет, воздействие воздуха, избыток тепла. Несовместимость с другими материалами: Сильные окислители.
Опасные продукты разложения: Окись углерода, двуокись углерода.
Опасная полимеризация не происходит.
При сохранении целостности упаковки может храниться в течение 36 месяцев при температуре 25 ºC

Витамин Е-это совокупность восьми соединений- 4 токоферолов и 4 токотриенолов. Все они имеют 6-хромовую кольцевую структуру и боковую цепь. Токолы имеют фитольную боковую цепь, тогда как триенолы имеют сходную структуру с двойными связями в положениях 3 ‘, 7’ и 11 ‘боковой цепи. И токолы, и триенолы встречаются в виде различных изомеров, которые отличаются друг от друга количеством и расположением метильных групп в хромонном кольце. Биологически активным является альфа-токоферол (его чаще всего и называют собственно витамин Е). Витамин Е является жирорастворимым витамином, всасывается в верхних отделах тонкого кишечника. Накапливается в основном в печени. Выводится с желчью. Основными источниками витамина Е являются растительные масла, листовая зелень и яичный желток.

В организме человека витамин Е присутствует главным образом в виде альфатокоферола. Витамин Е может быть выделен из природных источников (растения, овощи и мясо) или может быть изготовлен в лаборатории синтетическим путем. Поэтому витамин Е продается как натуральный или как синтетический препарат. Природный альфа-токоферол в настоящее время упоминается как RRR-альфа-токоферол (ранее d-альфа-токоферол), тогда как синтетический альфа-токоферол упоминается как all-rac-альфа-токоферол (ранее dl-альфа-токоферол). Этерифицированные формы витамина Е, такие как ацетат альфа-токоферола, сукцинат альфа-токоферола и никотинат альфа-токоферола, изготавливаются в лаборатории и также продаются.

Согласно некоторым исследованиям выяснено, что витамин Е взаимодействует с некоторыми загрязняющими веществами, присутствующими в окружающей среде и рационе питания. Основными загрязнителями атмосферы являются озон и оксид азота, которые способны генерировать свободные радикалы в организме. Витамин Е защищает от вредного воздействия озона и оксида азота. Основными загрязнителями пищи являются нитриты, которые присутствуют в свежих фруктах и ​​овощах, а также в беконе, колбасе и вяленом мясе. Нитриты сами по себе не вредны для взрослых, но они могут сочетаться с аминами в желудке с образованием нитрозамина. А нитрозамины являются одними из самых сильных агентов, вызывающих рак как у животных, так и у людей. Присутствие витамина С или витамина Е в желудке может предотвратить образование или снизить уровень нитрозаминов. Принимать витамин С или Е перед употреблением в пищу свежих фруктов и овощей, содержащих большое количество нитритов, не нужно, поскольку они содержат другую группу химических веществ, называемых фенольными, которые, подобно витамину Е, действуют как антиоксидант и могут предотвращать образование нитрозаминов. Тем не менее, важно принимать витамин Е непосредственно перед употреблением бекона, колбасы или вяленого мяса, чтобы предотвратить образование нитрозаминов.

Витамин Е находит применение в качестве пищевой витаминной добавки в рацион человека, а также для обогащения кормов животных. Выпускается он в виде капсул и таблеток и входит в состав комплексных мультивитаминных препаратов.

Многие положительные эффекты витамина Е используются в животноводстве. Например, замечено, что у кур дефицит селена приводит к плохому усвоению витамина Е из пищеварительного тракта. Витамин Е усиливает профилактическое действие селена на рак молочной железы у крыс, вызванный химическими веществами. Как витамин Е, так и цинк действуют как стабилизатор клеточных мембран. Эритроциты от животных с дефицитом цинка или витамина Е легко разрушаются свободными радикалами. Дополнение рационов витамином Е или цинком делает эти мембраны более устойчивыми к воздействию свободных радикалов. Диеты с дефицитом цинка вызывают повреждение кожи и суставов у курицы. Пищевые добавки с высокими дозами витамина Е предотвращают вышеуказанные вредные последствия дефицита цинка. Эти исследования показывают, что некоторые эффекты витамина Е и цинка на клетки похожи. Сообщалось, что у животных потребность в витамине Е в рационе увеличивается, когда потребление полиненасыщенных жирных кислот увеличивается. Ученые в области питания установили, что клеточные мембраны, содержащие полиненасыщенные жиры, легче повреждаются свободными радикалами, чем те, которые содержат насыщенные жиры. Чтобы защитить мембраны, которые содержат высокий уровень полиненасыщенных жиров, увеличение потребления витамина Е не только оправдано, но и необходимо.

Воздействие витамина Е на железо и медь усиливает разрушение витамина Е. Сообщалось, что у младенцев с низкой массой тела прием железа может вызывать развитие анемии с дефицитом витамина Е, особенно у тех детей, которых кормили молочной смесью, содержащей больше уровень полиненасыщенных жирных кислот.

Читайте также:  Почему нельзя принимать витамины при болезни

Витамин С защищает витамин Е от вредного воздействия железа и меди, а также помогает регенерировать витамин Е сразу после его разрушения свободными радикалами. Во время дефицита витамина Е уровни витамина А (ретинола и ретиниловых эфиров) в печени и ретинола в плазме снижаются. Эти уровни увеличиваются во время добавления альфа-токоферола. Потребление более высокого уровня витамина А в пище увеличивает потребность в витамине Е в организме. Большинство исследований на людях показывают, что потребление витамина Е имеет важное значение для эффективного использования витамина А и хранения печени. Дефицит витамина Е может также вызвать дефицит витамина B-12. Таким образом, изменения уровня витамина Е могут влиять на уровень других витаминов, таких как витамины А, С и В-12.

Фотосинтезирующие растения, водоросли и цианобактерии синтезируют витамин Е. Для коммерческого использования витамин Е можно экстрагировать из растений, как правило, в качестве побочного продукта получения растительных масел или полностью синтетическим способом.

Естественно полученный d-альфа-токоферол может быть экстрагирован и очищен от масел семян, или гамма-токоферол может быть экстрагирован, очищен и метилирован для создания d-альфа-токоферола. В отличие от альфа-токоферола, экстрагированного из растений, который также называют d-альфа-токоферолом, промышленный синтез создает dl-альфа-токоферол. Он синтезируется из смеси толуола и 2,3,5-триметилгидрохинона, которая реагирует с изофитолом на весь альфа-токоферол, используя железо в присутствии газообразного хлористого водорода в качестве катализатора. Полученную реакционную смесь фильтруют и экстрагируют водной каустической содой. Толуол удаляют выпариванием, и остаток очищают путем вакуумной перегонки. Производители пищевых добавок и обогащенных продуктов для людей или домашних животных превращают фенольную форму витамина в сложный эфир, используя либо уксусную кислоту, либо янтарную кислоту, потому что сложные эфиры являются, более химически стабильными, обеспечивая более длительный срок хранения. Эфирные формы деэтерифицируются в кишечнике и поглощаются как свободный альфа-токоферол.

Действие на организм:

Витамин Е является отличной ловушкой для пероксильных радикалов (ROO •) и является основным жирорастворимым антиоксидантом, присутствующим в клетках млекопитающих. Поэтому он занимает уникальное положение в арсенале природных антиоксидантов, обеспечивающих защиту от различных заболеваний. Исследования процесса реакции α-токоферола с пероксильными радикалами позволяют предположить, что существование механизма регенерации α-токоферола имеет важное значение для поддержания антиоксидантной жизнеспособности витамина. Антиоксидант, вообще — это молекула, которая ингибирует окисление других молекул. Окисление представляет собой химическую реакцию, которая может приводить к образованию свободных радикалов, вследствие чего возникают цепные реакции, повреждающие клетки. Антиоксиданты, такие как витамин Е, прекращают эти цепные реакции. Термин «антиоксидант» в основном используется для двух разных групп веществ: промышленных химикатов, которые добавляются к продуктам для предотвращения окисления, и натуральных химических веществ, находящихся в пищевых продуктах и тканях тела, которые, оказывают антиоксидантное действие на организм. Альфа-токоферол выполняет также структурную функцию, стабилизируя биомембраны клеток. При недостатке в организме витамина Е может развиться гемолитическая анемия. Часто витамин назначают во время беременности для предотвращения выкидыша и для полноценного развития плода.

Недавние исследования показывают, что лечение альфа-токоферилсукцинатом вызывает дифференцировку клеток при некоторых раковых заболеваниях (клетки меланомы in vitro); тем не менее, он ингибирует рост других опухолевых клеток (нейробластомы мыши, глиомы крысы и простаты человека) in vitro. С другой стороны, альфа-токоферол, альфа-токоферилацетат и альфа-токоферилникотинат в сходных концентрациях были неэффективными. Однако бутилированный гидроксианизол (BHA) и бутилированный гидрокситолуол (BHT), которые имеют антиоксидантные свойства, подобные свойствам витамина Е, были только частично эффективными в достижении вышеуказанных изменений. Таким образом, влияние сукцината витамина Е на раковые клетки, отчасти, обусловлено его антиоксидантным механизмом. Альфа-токоферол также вызывает дифференцировку миелоидного лейкоза у мышей in vitro. Недавние исследования in vitro продемонстрировали новый механизм действия витамина Е, в котором не участвует его антиоксидантная роль. Лечение сукцинатом витамина Е раковых клеток (нейробластома) и нормальных фибробластов (L-клетки мыши) ингибирует стимулированную простагландинами (PG) E1 и PGA2-аденилатциклазу (превращает АТФ в аденозин-3 ‘, 5’-циклический монофосфат). Этот эффект в первую очередь обусловлен ингибированием каталитической активности белка аденилатциклазы. Из-за участия простагландинов в канцерогенных событиях было высказано предположение, что один из механизмов профилактики рака витамином Е может включать снижение реакции аденилатциклазы на простагландины. Поскольку выработка избытка простагландинов связана с подавлением иммунной системы и агрегацией тромбоцитов, вышеуказанный механизм витамина Е может быть вовлечен в индуцированный витамином Е стимуляционный иммунитет и ингибирование агрегации тромбоцитов. В недавнем исследовании было отмечено, что лечение витамином Е клеток нейробластомы увеличивает экспрессию гена c-mye (нормального клеточного гена) примерно в пять раз (Sharna & Prasad, неопубликованное наблюдение). Это первая демонстрация того, что витамин Е может усиливать транскрипцию определенной последовательности ДНК. Значение этого наблюдения в контроле роста, дифференцировки и злокачественности неизвестно в настоящее время.

Относительная эффективность природных и синтетических форм витамина Е изучена недостаточно. В экспериментальных системах in vitro природные и синтетические формы витамина Е были одинаково эффективны в отношении ингибирования роста клеток нейробластомы и меланомы. Однако d-форма витамина Е была более мощной, чем dl-форма, в подавлении роста клеток глиомы.

Источник

Читайте также:  Витамины для слуха ребенка

ТОКОФЕРОЛЫ

ТОКОФЕРОЛЫ — группа метильных производных токола, обладающих биологической активностью витамина E. Термин «токоферолы» не является синонимом термина «витамин E», т. к. биол. активностью витамина E, но менее выраженной, обладают и токотриенолы. Токоферолы выполняют в тканях роль биологических антиоксидантов (см. Антиокислители), инактивирующих свободные радикалы (см. Радикалы свободные) и тем самым препятствующих развитию свободнорадикальных процессов перекисного окисления (см. Перекиси) ненасыщенных липидов — важнейшего компонента биол. мембран (см. Мембраны биологические). Эта функция Токоферолов имеет большое значение для поддержания структурной целостности и функциональной активности мембран клеток и субклеточных органелл. Недостаточность Токоферолов в организме человека ведет к гиповитаминозу Е, проявляющемуся мышечной слабостью и гипотонией вплоть до мышечной дистрофии, наклонностью к самопроизвольным абортам (см.), склеродермией (см.) и др. (см. Витаминная недостаточность). Препараты Токоферолов используют в качестве лекарственных средств при гиповитаминозе E и других заболеваниях.

Основой всех Токоферолов является токол [2-метил-2(4′,8′,12′-триметилтридецил)-хроман-6-ол], т. е. 6-оксихроман, замещенный в положении 2 метильной группой (CH3-группой) и имеющий боковую насыщенную изопреноидную цепь из 16 углеродных атомов.

Отдельные Т.— α-, β-, γ- и δ-токоферолы — отличаются друг от друга количеством и положением метильных групп в ароматическом кольце молекулы 6-оксихромана. Важнейший из них в биол. отношении, альфа-токоферол, является 5,7,8-триметилтоколом; бета-токоферол является 5,8-диметилтоколом, гамма-токоферол — 7,8-диметилтоколом и дельта-токоферол — 8-метилтокоферолом.

Для молекулы Т. характерны три асимметрических центра, поэтому каждый из Т. имеет 8 стереоизомеров (см. Изомерия) и 4 рацемата (см. Рацемические соединения). Природный альфа-токоферол имеет D-конфигурацию у всех асимметрических центров и обозначается как D-альфа-токоферол.

Все Т. при комнатной температуре представляют собой масла светло-желтого цвета; мол. вес (масса) альфа-токоферола 430,7, альфа-токоферил-ацетата — 472,8; t°пл D-aльфа-токоферола 2,5—3,5°, D-aльфа-токоферилацетата 26,5—27,5°; максимумы поглощения для D-aльфа-токоферола и DL-a-токоферола соответствуют длине волны 292 нм, а для D-альфа-токоферилацетата и DL-aльфа-токоферилацетата — длине волны 284—285 и 285,5 нм. Т. нерастворимы в воде, хорошо растворимы в органических растворителях — хлороформе, эфире, гексане, петролейном эфире, несколько хуже — в ацетоне и спирте. Р-ры Т. в органических растворителях обладают интенсивной флюоресценцией с максимумом возбуждения при 295 нм. и максимумом излучения (эмиссии) при 320—340 нм и вращают плоскость поляризованного света вправо. Т. устойчивы к действию к-т и щелочей. В вакууме или атмосфере какого-либо инертного газа Т. стабильны даже при нагревании до 100°. Т. чувствительны к УФ-излучению, кислороду воздуха и другим окислителям, к-рые превращают их в соответствующие хиноны, лишенные биол. активности. Т. легко образуют сложные эфиры с к-тами; эфиры Т. отличаются значительно большей устойчивостью к окислению. Важнейшие из них — альфа-токоферилацетат (D-aльфа-токоферилацетат) и DL-aльфа-токоферилацетат.

Т. легко вступают во взаимодействие- со свободными радикалами и активными формами кислорода, чем определяются их антиокспдантные свойства.

В мед. промышленности природные Т. получают из растительных масел, а синтетические Т.— конденсацией метилзамещенных n-гидрохинонов с фитолом или изофитолом.

Т. широко распространены в природе. В организме человека они присутствуют во всех тканях, обнаруживаясь гл. обр. в мембранах клеток и субклеточных органелл. Из пищевых продуктов наиболее богаты Т. растительные масла, особенно кукурузное и хлопковое, а также масло, получаемое из пшеничных зародышей (табл.). Большая часть Т. подсолнечного масла приходится на α-токоферол (60—80%), соевого и кукурузного — на γ-токоферол (60 и 80% соответственно). Продукты животного происхождения, особенно молоко, бедны Т.

Суммарную активность витамина Е при расчете, напр., его содержания в продуктах питания выражают в a-токофероловых эквивалентах, активность 1 эквивалента соответствует активности 1 мг природного α-токоферола. Поскольку последний нестабилен, в качестве стандарта для определения биол. активности рекомендуют использовать D-α-токоферилацетат.

Биол. активность Т. измеряют в международных единицах (ME); 1 ME соответствует активности 1 мг D L-α-токоферилацетата, введенного per os беременным крысам, содержащимся на рационе, лишенном витамина Е (тест по предотвращению резорбции плода). Активность природного D-α-токоферола, наиболее активного из всех Т., примерно на 40% выше активности синтетического DL-α-токоферола. Биол. активность β-, γ- и δ-токоферолов составляет соответственно 20— 30, 10 и 1% активности природного D-α-токоферола.

Потребность человека в витамине Е точно не установлена; рекомендуемая норма его потребления, принятая в СССР, составляет 12 —15 ME в сутки. Увеличение потребления с пищей полиненасыщенных жирных кислот (см.) повышает потребность организма человека в витамине Е.

Одним из основных методов оценки обеспеченности человека витамином Е является определение концентрации Т. в сыворотке или плазме крови. Обычно для этого применяют спектрофотометрические методы (см. Спектрофотометрия), основанные на окислении Т. хлорным железом и определении образующихся ионов Fe2+ в виде окрашенного комплекса с α-, α’-дипиридилом: или о-фенантролином. Широкое распространение приобретают спектрофлюориметрические методы, обладающие большей чувствительностью и позволяющие исследовать содержание Т. в 0,1 мл сыворотки крови.

В качестве функциональных методов оценки обеспеченности организма витамином Е используют экскрецию креатина (см.) с мочой и чувствительность эритроцитов к перекислому гемолизу в изотонической среде. Оба эти показателя существенно возрастают при дефиците витамина Е. Кроме того, методом газовой хроматографии (см.) определяют содержание в выдыхаемом воздухе пентана и этана, количество к-рых при дефиците витамина Е увеличивается вследствие перекисного окисления ненасыщенных жирных к-т.

Читайте также:  Органические витамины это какие

В норме концентрация Т. в сыворотке крови составляет 0,8—1,2 мг/100 мл. У новорожденных и особенно у недоношенных детей концентрация Т. бывает 0,2 — 0,4 мг/100 мл.

Клин, проявления недостаточности витамина Е обычно обнаруживают при концентрации Т. в сыворотке крови ниже 0,5 мг/100 мл. Гиповитаминоз Е (в основном из-за недостаточности Т.) у взрослых встречается довольно редко и, как правило, бывает обусловлен нарушениями всасывания Т. в кишечнике при стеаторее (см.), резекции тонкой кишки и др. Эндогенный дефицит Т. возникает при абеталипопротеинемии (см.) — наследственном заболевании, генетически обусловленном угнетением синтеза бета-липопротеидов, пре-бета-липопротеидов и хиломикронов (см. Липопротеиды) в печени.

Поскольку Т. плохо проходят через плацентарный барьер, то часто недостаточность витамина E наблюдают у новорожденных и особенно у недоношенных детей, находящихся на искусственном вскармливании. Гиповитаминоз E у недоношенных, усугубляемый оксигенацией. может быть причиной анемии (см.), ретинопатии (см.) и нарушений зрения (см.), бронхолегочной дисплазии, внезапной гибели новорожденных. Поскольку коровье молоко значительно беднее Т., чем женское, то включение Т.

в комплексную терапию недоношенных и обогащение Т. смесей для искусственного вскармливания являются важными мероприятия ми для профилактики указанных нарушений.

В эксперименте на животных установлено. что недостаточность Т. ведет к дистрофии зародышевого эпителия семенных пузырьков, снижению подвижности сперматозоидов, резорбции эмбрионов и плодов, энцефалопатии, экссудативно-катаральному диатезу, накоплению в тканях липофусцина.

В основе всех этих проявлений лежат биохимические нарушения, обусловленные выпадением специфических функций Т. в организме, в частности усиление перекисного окисления липидов биол. мембран, ведущее к повреждению клеточных и субклеточных мембран. Этот дефект является причиной такого проявления недостаточности витамина Е, как резкое усиление чувствительности эритроцитов к перекисному гемолизу, утрата саркоплазматической сетью способности к аккумуляции и удержанию ионов Са 2+ , ведущая к нарушениям в механизме мышечного сокращения (см.) и выходу в кровь тканевых ферментов.

Токоферол как препарат

В качестве лекарственного средства с лечебной и профилактическими целями используют р-ры альфа-токоферола ацетата (витамина Е) в масле (Solutio α-Tocopheroli acetatis oleosa) 5, 10 и 30% , содержащие в 1 мл соответственно 50, 100 и 300 мг синтетического α-токоферола ацетата (α-токоферилацетата).

Токоферола ацетат благотворно влияет на функции скелетных мышц, половых желез, печени, клеток нервной системы, соединительной ткани и кожи. Имеются сведения о непрямом влиянии токоферола ацетата на поглощение кислорода митохондриями, что определяет роль Т. в энергетическом обмене. Кроме того, препарат оказывает регулирующее действие на биосинтез белков, нуклеиновых к-т и стероидов.

Всасывание токоферола ацетата при введении внутрь происходит в тонкой кишке после эмульгирования с помощью желчных кислот (см.) и сока поджелудочной железы. Проходя через слизистую оболочку кишечника, в соответствии с механизмом пассивного транспорта токоферола ацетат поступает в лимфу, связывается с липопротеидами и неравномерно распределяется по различным органам и тканям. Невсосавшийся в кишечнике токоферола ацетат выводится в неизмененном виде, проникший в кровь— удаляется из организма с мочой в виде водорастворимых глюкуронидов; в результате свободнорадикального окисления токоферола ацетата могут образовываться также токоферилхинон и другие метаболиты Т., выводимые из организма с мочой.

Токоферола ацетат применяют при мышечных атрофиях, дерматомиозите, амиотрофическом боковом склерозе, нарушениях менструального цикла, угрозе прерывания беременности, нарушении функций половых желез у мужчин, заболеваниях нервно-мышечной системы и соединительной ткани (напр., при контрактуре Дюпюитрена), атеросклерозе и заболеваниях периферических сосудов. Есть данные об эффективном применении токоферола ацетата при нек-рых дерматозах, псориазе, красной волчанке и других заболеваниях кожи, при миокардиодистрофии и заболеваниях печени. В педиатрической практике токоферола ацетат применяют при склеродерме и гипотрофии.

Назначают токоферола ацетат внутрь и внутримышечно; при заболеваниях нервно-мышечной системы назначают по 15 —100 мг в сутки, при нарушениях сперматогенеза и потенции — по 100—300 мг в сутки (в сочетании с гормональной терапией), при привычном выкидыше — по 10—15 мг в сутки в первые 2—3 мес. беременности, при угрожающем аборте — по 100—150 мг в сутки (в сочетании с прогестероном) в течение 5—7 дней, при атеросклерозе и заболеваниях периферических сосудов — по 100 мг (в сочетании с ретинолом). Грудным детям и детям младшего возраста назначают по 5 — 10 мг токоферола ацетата в сутки. Внутримышечно препарат вводят в подогретом виде ежедневно или через день в случаях нарушения всасывания и обмена токоферола ацетата в организме. Дозировки такие же, как и при приеме внутрь.

Токоферола ацетат — малотоксичное соединение. При внутримышечном введении иногда наблюдают аллергические и токсические проявления, а также болевые ощущения в месте инъекции. Токоферола ацетат несовместим с бензилпенициллином. Необходимо проявлять осторожность при его назначении больным с тяжелым кардиосклерозом и инфарктом миокарда.

Формы выпуска: во флаконах оранжевого цвета по 10, 20, 25, 50 мл и в капсулах, содержащих по 0,1 или 0,2 мл 50% р-ра (0,05 или 0,1 г токоферола ацетата). Для внутримышечного введения выпускают масляные 5, 10 и 30% р-ры токоферола ацетата (Solutio α-Tocopheroli acetatis oleosa pro injectionibus) в ампулах по 1 мл.

Хранят в хорошо укупоренных склянках в прохладном, сухом, защищенном от света месте.

Источник

Adblock
detector