Меню

Технологическая схема получения концентрата витамина в12

Производство кормового концентрата витамина В12 и метана метановым брожением послеспиртовой барды

Витамин В12 не содержится в растительных кормах, поэтому его добавляют к ним. Витамин В12 кроветворный, участвует в синтезе незаменимых для животных организмов аминокислот, в частности метионина, способствует вылечиванию злокачественной анемии, росту привеса животных. Витамин В12 синтезируется в рубце жвачных животных под действием микроорганизмов желудка, а также метанообразующими бактериями. Условия культивирования термофильных метанообразующих бактерий на мелассной барде с целью получения витамина В12 изучены Институтом биохимии им А.Н Баха РАН, а технология кормового концентрата витамина разработана ВНИИППД совместно с работниками предприятий, на которых были построены первые цехи. В настоящее время этот продукт вырабатывают Андрушевский и Калкунский спиртовые заводы. Технологическая схема производства включает в себя следующие основные стадии и операции: сбраживание мелассной барды метанообразующими бактериями; подкисление метановой бражки до рН 5,5 . 6,5; упаривание метановой бражки; высушивание; фасование кормового витамина В12. Барда может быть использована для метанового брожения как среда для культивирования метанообразующих бактерий. При этом в процессе метанового брожения образуются витамины, из которых особое значение имеет витамин В12. Технологическая схема производства кормового концентрата витамина В12 метановым брожением барды приведена на рисунке.

Витаминный состав кормового концентрата, названного КМБ-12 (концентрат метанового брожения, содержащий витамин В12, следующий, мг/кг натурального веса:

В12 (цианкобаламин) 25—30

Пантотеновая кислота . 12—15
Рибофлавин . . . 50—60
Пиридоксин . 30—40

Никотиновая кислота 80—90
Тиамин . 1—2

Схема 8. Принципиальная схема производства кормового концентрата витамина В12 (КМБ-12) из послеспиртовой и последрожжевой барды

1. Метановое сбраживание

2. Обработка метановой бражки соляной кислотой

3. Подогрев и дегазация подкисленной

4. Упаривание метановой бражки

5. Сушка упаренной метановой бражки

6. Расфасовка и упаковка готового продукта (КМБ-12)

Концентрат содержит 25% протеинов. Образующиеся газы брожения (20-25 м3/т барды) содержат 65—70% метана, имеют теплотворную способность 6200—6500 ккал/м3 и используются как топливо. Конденсаты, получаемые при упаривании метановой бражки, после их охлаждения на градирне имеют БПК5 = 80—100 мг/л.

Принципиальная схема производства кормового концентрата витамина В12 из послеспиртовой и последрожжевой барды метановвым брожением приведена на схеме 8 (см. выше).

Пример технологии утилизации послеспиртовой барды и производства витамина В12

По способу, разработанному УкрНИИСПом и внедренному на Андрушевском спиртовом заводе, последрожжевую барду используют для производства витамина В12. С этой целью барду сбраживают метанообразующими бактериями, бражку сгущают на Выпарной Установке и сушат на распылительной сушильной установке. Получаемый продукт является ценной витаминной добавкой в корма.

Упаривание метановой бражки производится под вакуумом на четырехкорпусной выпарной станции, оборудованной аппаратами с естественной циркуляцией. Время работы Выпарной Установки между промывками 27-28 суток. Промывку осуществляют 2-3 %-ным раствором щелочи без механической чистки.

Метановое брожение последрожжевой мелассной барды осуществляется в метан-танках симбиозом бактерий при температуре 53-55 градусов Цельсия. При этом используется смешанная культура бактерий, позволяющая осуществить непрерывный двухфазный процесс, при котором имеет место система взаимосвязанных процессов, осуществляемых различными организмами, когда продукты жизнедеятельности одной группы сразу же используются в качестве питательной среды для другой группы и т.д. В конечном счете органическая часть барды разлагается до углекислоты и метана. Метановое брожение ведут в двух параллельно работающих метантенках, оптимальную температуру в которых поддерживают регулированием температуры, поступающей в них барды. Процесс метанового брожения контролируют по значению рН, содержанию летучих кислот и витамина В12 в метановой бражке. Культура должна иметь рН 7,5 ..8,5; если он ниже 7,5 и содержание летучих кислот превышает 4,5 г/л, уменьшают приток барды. В 1 м3 метановой бражки накапливается 1,0 .. 2,0 г витамина В12. Интенсивность метанового брожения вторичной барды ниже, чем первичной. Добавление во вторичную барду источника азота в виде мелассы, дрожжевого автолизата, сульфата аммония или кукурузного экстракта способствует большему накоплению витамина В12.

В процессе метанового брожения из 1 м3 последрожжевой барды выделяется около 16 м3 газа, содержащего 60 % метана. При выходе барды на 1000 дал спирта 140 м3 количество чистого метана В составит 1344 м3 (140 * 16 * 0,6), что в переводе на условное топливо равно:

В усл. = В * Qн / 29 400 = 1344 * 35 832 / 29 400 = 1638 кг,

где В — количество чистого метана, м3;

теплотворная способность метана, равная 35 832 кДж/м3;

29 400 — теплотворная способность условного топлива, кДж/кг.

При метановом сбраживании последрожжевой барды бактерии используют не только органические соединения, но и некоторые кислотные радикалы солей. Сероредуцирующие бактерии переводят SO4 в H2S. В результате этих реакций катионы металлов Ca, K, Na связываются с образующимся при метановом брожении CO2. Ввиду большого избытка CO2 эти металлы образуют бикарбонаты. Растворимый бикарбонат кальция при упаривании превращается в нерастворимый CaCO3:

Ca(HCO3)2 → ↓CaCO3 + H2O + CO2

Во избежание образования отложений на поверхностях нагрева метановую бражку перед упариванием подкисляют соляной кислотой (расход технической соляной кислоты составляет 1,0 .. 1,5 кг на 1 м3 метановой бражки) до рН 5,5-6,0 и, нагревая до температуры 90 .. 100 гр. Цельсия, дегазируют, при этом из 1 м3 метановой бражки выделяется около 1м3 газов . В этом случая нерастворимые соли кальция превращаются в хлористые легко растворимые соли:

CaCO3 + 2 HCl = CaCl + H2O + CO2

Метановую бражку, содержащую 3,5 .. 4 % сухих веществ, упаривают в четырехкорпусной установке до концентрации сухих веществ 35 . 40%. В первом корпусе температура кипения 125 .. 128 гр. Цельсия, во втором — 115, в третьем — 100, в четвертом — 75..78 градусов Цельсия. Упаренную метановую бражку высушивают в распылительной сушилке до влажности 3,7 . 10% и полученный кормовой концентрат витамина В12 фасуют в крафт-мешки с внутренним полиэтиленовым вкладышем. Готовый продукт представляет собой порошок коричневого цвета, влажностью не более 10%, с содержанием витамина В12 не менее 50 мг/кг, общего белка в пересчете на сухие вещества не менее 27%. Кроме витамина В12 в 1 кг концентрата содержится 1,5 ..1,6 мг тиамина, 50 .. 60 мг пироксидина и 0,35 .. 0,40 мг биотина. Расход кормового концентрата витамина В12 составляет 4. 4,5 кг на 1 тонну кормов. Газы, образующиеся при метановом брожении, направляют в газгольдер, а затем сжигают в топках паровых котлов. Теплота сгорания газов 27 000 . 29 000 кДж/кг. Они имеют неприятный запах, обусловленный наличием сероводорода, индола и скалола. Для спиртового производства производительностью 10 000 дал спирта в сутки при метановом брожении барды выделится 13 440 м3 метана в сутки, что эквивалентно 16 т условного топлива.

При сжигании 1 м3 метана в современных паровых котлах с КПД = 0,8 — 0,92 может быть получено 11-12 кг пара, или 148 — 161 т/сут. Потребление пара на заводе такой производительности обычно составляет 650 тонн/сутки (на современных — обычно еще меньше), т.е. 23-25% теплоты может быть получено за счет метанового брожения отходов спиртового производства.

Важно, что при упаривании метановой бражки увеличивается продолжительность работы выпарной установки между промывками.

На рисунке 2 показана принципиальная схема получения и упаривания метановой бражки. Метановое брожение производят непрерывным способом, используя смешанную культуру метанообразующих бактерий, в анаэробных условиях при 55. 57 гр. Цельсия. Мелассную барду, имеющую температуру 28 . 35 гр. Цельсия, поступающую из цеха кормовых дрожжей, подогревают и направляют в три метантенка вместимостью 4000 м3 каждый. Бражка из цеха сухих кормовых дрожжей через теплообменник 1 подается в метантанк 2 с температурой 53 — 55 градусов Цельсия, содержание сухих веществ в исходной барде 5,5 .. 5,6% и рН 4,5 ..5,5. Для поддержания постоянной температуры и перемешивания среды в нем бражка из нижней части насосом 4 прокачивается через подогреватель 5 и подается в верхнюю часть. Выделяющиеся в процессе брожения газы из метан-танка поступают в газгольдер 3, а из газгольдера подаются в топку котла или на другие нужды.

Рис.2. Принципиальная схема получения и упаривания метановой бражки.

В начале производства культуру метанообразующих бактерий размножают, применяя в качестве посевного материала метановую бражку (примерно 200 м3)от предыдущего производственного сезона. Размножение бактерий до полезного объема метантенка (3600 м3) продолжается 30 сут. После накопления необходимого объема культуры осуществляется непрерывный процесс метанового брожения при постоянном притоке в метантенки барды и одновременном отбопе метановой бражки. Метановое брожение протекает в две стадии: в первой — кислотном брожении — метанообразующие бактерии превращают углеводы, белки и жиры в органические кислоты; во второй повышают рН, так как органические кислоты и азотистые вещества разлагаются с образованием аммонийных соединений, аминов и других продуктов, обладающих щелочными свойствами. При метановом брожении выделяются газы, содержащие 60 — 70 % метана. Продукты первой стадии метанового брожения наряду с повышением кислотности вызывают увеличение окислительно-восстановительного потенциала среды, тогда как при нормальному протеканию второй стадии брожения благоприятствуют нейтральная реакция и низкий окислительно-восстановительный потенциал, поэтому метановое брожение происходит чрезвычайно медленно. Приток барды в метантенки регулируют таким образом, чтобы образующиеся в первой стадии брожения органические кислоты потреблялись метанообразующими бактериями во второй стадии брожения с образованием главным образом метана и витамина В12, иначе процесс завершается на первой стадии и происходит «закисание» культуры. Для активирования жизнедеятельности бактерий в метантенки добавляют суспензию кормовых дрожжей. Бражка из метантанка поступает в смеситель 7, куда также из сборника 6 поступает соляная кислота. В смесителе бражка доводится до рН 5,5-6,0 и насосом 8 подается в подогреватель 9, где она нагревается до температуры 100 гр. Цельсия и направляется на дегазатор 10. Из дегазатора насосом 11 подается на подогреватель 12,13, где доводится до температуры кипения в первом корпусе выпарной станции.

Читайте также:  Хлеб витамины 3 класс

Первый корпус 14 выпарной установки и подогреватель 13 обогреваются свежим паром, а конденсат из них собирается в сборнике 18. Конденсат свежего пара направляется в подогреватель 5 для повышения температуры бражки в метан-танке, а из него — в котельную.

Вторичный пар первого корпуса ВУ, проходя через ловушку 15, очищается от летучих веществ, подается на обогрев второго корпуса 16, подогревателя 12, а конденсат из них собирается в сборнике 19.

Вторичный пар от второго корпуса, проходя через ловушку 17, также очищается от летучих веществ, затем подается на кипятильники брагоректификационной установки и на подогреватель 9, а из них собирается в сборнике конденсата 20. В этот же сборник подается через конденсатоотводчик конденсат вторичного пара первого корпуса из сборника 19. Конденсат вторичных паров из сборника 20 насосом 21 подается на подогрев барды в подогреватель 1, а из него на производство.

Упаривание бражки производится на двухкорпусной выпарной установке под давлением с использованием вторичного пара, которая оборудована аппаратами с принудительной циркуляцией и горизонтальными двухходовыми кипятильниками.

В метановой бражке содержится ряд летучих соединений (органические кислоты, аммиак, высшие спирты, индол, скатол и др.). При упаривании в зависимости от температуры и времени значительная часть этих соединений будет содержаться во вторичных парах и конденсатах. Некоторые примеси, особенно дурно пахнущие, не позволят использовать в технологии спиртового завода, производящего питьевой этиловый спирт, вторичные пары и конденсаты Выпарной Установки.

Для снижения расхода топлива на спиртовых заводах, производящих питьевой этиловый спирт, за счет использования сброженной метановой барды необходимо разработать технологию дезодорации вторичных паров метанового сбраживания барды, определить физические свойства образующейся парогазовой смеси вторичных паров, изучить условия инкрустации поверхности нагрева при упаривании метановой бражки и разработать способы их устранения.

КАК ПОКАЗАЛ МНОГОЛЕТНИЙ ОПЫТ СССР ПРИМЕНЕНИЕ ВИТАМИНА В-12 В СОСТАВЕ ПРЕМИКСОВ К КОМБИКОРМАМ В ЖИВОТНОВОДСТВЕ И ПТИЦЕВОДСТВЕ ПОВЫШАЕТ ПРОДУКТИВНОСИТЬ, СНИЖАЕТ РАСХОД КОРМОВ, СОКРАЩАЕТ СРОКИ ОТКОРМА, СОХРАНЯЕТ МОЛОДНЯК.

ПОТРЕБНОСТЬ ОТЕЧЕСТВЕННОГО СВИНОВОДСТВА И ПТИЦЕВОДСТВА В ВИТАМИНЕ В12 СОСТАВЛЯЕТ 1460 кг в год.

К 2020 г. поголовье нужно увеличить, как минимум, в 2 раза. И потребуется 2920 кг витамина В12, или перерабатывать до 7300 тысяч м3 барды в год, или задействовать 55 заводов-трехтысячников, — 610 тысяч м3 этанола в год. д

Расход корма в России на 1 ц привеса свинины — 5.94 Ц. корм. Ед.

  1. РАЗВИТЫЕ СТРАНЫ 2-4 Ц. на 1 ц привеса
  2. Витамино-белковые добавки необходимы для российского АПК

Источник

Микробиологический синтез витамина В12

СИНТЕЗ ВИТАМИНА В12

Общая информация о получении витамина В12

Из всех витаминов, методом микробиологического синтеза производят в основном витамин В12 и его коферментную форму. Продуцентами в этом процессе служат пропионовокислые бактерии . Для получения кормовых концентратов, содержащих витамин В12, на отходах бродильной промышленности (послеспиртовые, ацетоно-бутиловые барды и др.) применяют комплекс метанообразующих бактерий.

Физиология прокариот (бактерий) — центральное направление микробиологии, формирующее целостное представление о жизнедеятельности организма. Изучение физиолого-биохимических свойств практически значимых микроорганизмов актуально в плане решения общечеловеческой задачи — улучшения качества жизни. Пропионовокислые бактерии (ПКБ) имеют разнообразное практическое применение. Достаточно напомнить, что Propionibacterium freudenreichii subsp. shermanii — основная и незаменимая культура, используемая в мировом производстве «твёрдых» сыров , а в России — и в производстве витамина B12 , однако области применения ПКБ этим не ограничены. Поэтому биология ПКБ находится под постоянным «прицелом» специалистов разных профилей. Регулярно проводится международный тематический симпозиум «Propionibacteria». В различных исследованиях значительное внимание уделено роли кобальта и кобаламина (истинного витамина В12) в биосинтезе корриноидов — соединений группы витамина В12. Также сегодня весьма актуально и изучение значения ионов кобальта и корриноидов для жизнедеятельности самих пропионовокислых бактерий.

Молекулярная структура кобаламинов (витамина В12)

Витамин B12 — первое органометаллическое соединение, выделенное из биологической системы. Из неполимерных органических соединений имеет наиболее сложное строение, изображенное на рисунке. Молекула состоит из двух почти планарных циклических структур и линейного участка. Металл Со+3 связан с макроциклом, сильно напоминающим порфириновое ядро гема. Это тетрапиррольная структура, но имеющая ту особенность, что вместо метановых мостиков, связывающих 4 пиррольных кольца, кольца А и D непосредственно связаны. Вторая кольцевая структура — азотистое основание — 5,6-диметилбен-зимидазол (5,6 ДМБ>. 5,6 ДМБ соединен с первой кольцевой системой гетерогенной боковой цепью, состоящей из N-амино-2-пропанола (изопропанола), этерифицированного фосфатом 3-мононуклеотида, связанного с основанием 5,6 ДМБ Na-гликозидной связью.

Структура витамина В12 не только очень сложная, но содержит некоторые необычные части: 1) корриновая структура ранее не была известна в органической химии (до открытия витамина В12 в 1948 г. независимо Риксом и Смитом); 2) Na-гликозидная связь встречается в природе очень редко и обнаружена лишь в нескольких соединениях, содержащих рибозо-3-фосфат; 3) 5,6 ДМБ тоже принадлежит к уникальным соединениям и встречается в природе только в составе кобаламинов.

Атом кобальта имеет 6 координационных связей; 4 из них заняты пиррольными кольцами. Одна — N-3-5,6 ДМБ и последняя — верхним лигандом (У), природа которого может варьировать. В коммерческом витамине В12 (цианкобаламине) лиганд -CN-группа (артефакт процесса выделения).

In vivo чаще всего встречаются дезоксиаденозильная группа (Co-B12-I), метильная группа (метилкобаламии, СН3-B12-CoB-II) или оксогруппа (оксокобаламин). Кроме этих соединений, известных как кобаламины, есть другие корриноидные соединения с иным нуклеотид-аным основанием.

Продуценты витамина B12.

В природе витамин В12 и родственные корриноидные соединения находят в клетках микроорганизмов, в тканях животных и некоторых высших растениях (горох, лотос, побеги бамбука, листья и стручки фасоли). Однако происхождение витамина В12 в высших растениях окончательно не установлено. Такие низшие эукариоты, как дрожжи и мицелиальные грибы, корриноиды, по-видимому, не образуют. Организм животных не способен к самостоятельному синтезу витамина. Среди прокариот способность к биосинтезу корриноидов широко распространена. Активно продуцируют витамин В12 представители рода Propionibacterium. Природные штаммы пропионовокислых бактерий образуют 1,0—8,5 мг/л корриноидов, но получен мутант P. shermanii M.- 82, с помощью которого получают до 58 мг/л витамина. В семействе Propionibacteriaceae есть и другие представители, способные к высокому накоплению витаминами В12 в клетках. Это, прежде всего, Eubacterium limosum (Batyribacterium retteerii). Как продуценты витамина практический интерес имеют многие представители актиномицетов и родственных микроорганизмов. Истинный витамин В12 в значительных количествах синтезирует Nocardia rugosa. Путем мутаций и отбора получен штамм N. rugosa, накапливающий до 18 мг/л витамина В12. Активные продуценты витамина обнаружены среди представителей рода Micromonospora: M. purpureae, M. echinospora, M. halophitica, M. fusca, M. chalceae.

Читайте также:  Лечение гормонального сбоя витаминами

Высокой кобаламинсинтезирующей активностью обладают метаногенные бактерии, например, Methanosarcina barkeri, M. vacuolata и отдельные штаммы галофильного вида Methanococcus halophilus. Последний организм синтезирует более 16 мг корриноидов на грамм биомассы. Столь высокого содержания корриноидов не отмечено ни у одного другого из изученных микроорганизмов. Причина высокого содержания корриноидов у метаногенных бактерий не установлена. Корриноиды синтезируют строго анаэробные бактерии из рода клостридий. У Clostridium tetanomorphum и Cl. Sticklandii аденозилкобаламин входит в состав ферментных систем, катализирующих специфические реакции изомеризации таких аминокислот, как глутаминовая, лизин и орнитин. В значительных количествах образуют витамин В12 ацетогенные клостридии Cl. thermoaceticum, Cl. formicoaceticum и Acetobacter woodi, синтезирующие ацетат из СО2. Известны активные продуценты витамина B12 у псевдомонад, среди которых лучше других изучен штамм Pseudomonas denitrificans MB-2436 — мутант, дающий на оптимизированной среде до 59 мг/л корриноидов. Корриноиды синтезируют Rhodopseudomonas, фототрофные пурпурные бактерии Rhodobacter sphericus , Rh. Capsulatus, Rhodospirillum rubrum, Chromatium vinosum и ряд других видов. Наряду с витамином В12 они образуют бескобальтовые корриноиды, роль которых для продуцентов не установлена. Значительные количества витамина В12 образует цианобактерия Anabaena cylindrica, одноклеточные зеленые водоросли Chlorella pyrenoidosae и красные водоросли Rhodosorus marinus. Продуценты витамина B12 культивируют в средах, приготовленных на основе пищевого сырья: соевой муки, рыбной муки, мясного и кукурузного экстракта. В последние годы выявлены микроорганизмы, образующие высокие качества корриноидов при утилизации непищевого сырья.

Получение и применение витамина В12

Мировая продукция витамина В12 составляет 9 — 11 тыс. кг в год; из них 6,5 тыс кг используют на медицинские цели, а остальное — для животноводства. Производство витамина В12 основано главным образом на культивировании пропионовокислых бактерий (Великобритании, Венгрии), мезофильных и термофильных меганогенных бактерий (Венгрия), а также актиномицетов и родственных форм (Италия).

В СНГ в качестве продуцента витамина В12 используют пропионовокислые бактерии P. shermanii . Для получения витамина B12 бактерии культивируют периодическим методом в анаэробных условиях в среде, содержащей кукурузный экстракт, глюкозу, соли кобальта и сульфат аммония. Образующиеся в процессе брожения кислоты нейтрализуют раствором щелочи, который непрерывно поступает в ферментер. Через 72 ч. в среду вносят предшественник — 5,6-ДМБ. Без искусственного введения 5,6-ДМБ бактерии синтезируют фактор В и псевдовитамин В12 (азотистым основанием служит аденин), не имеющие клинического значения. Ферментацию заканчивают через 72 ч. Витамин B12 сохраняется в клетках бактерий. Поэтому после окончания брожения биомассу сепарируют и экстрагируют из нее витамин водой, подкисленной до рН 4,5 — 5,0 при 85 — 90°С в течение 60 мин. с добавлением в качестве стабилизатора 0,25 % NaNO2.

Водный раствор витамина В12 охлаждают, доводят рН до 6,8 — 7,0 50 %-ным раствором NaOH. К раствору добавляют Al2(SO4)3* 18Н2О и безводный FeCl3 для коагуляции белков и фильтруют через фильтр — пресс. Очистку раствора проводят на ионообменной смоле СГ-1,с которой кобаламины элюируют раствором аммиака. Далее проводят дополнительную очистку водного раствора витамина органическими растворителями, упаривание и очистку на колонке с Аl2О3, с окиси алюминия кобаламины элюируют водным ацетоном. К водно-ацетоновому раствору витамина добавляют ацетон и выдерживают 24 — 48 ч. при 3 — 4°С. Выпадающие кристаллы витамина отфильтровывают, промывают сухим ацетоном и серным эфиром и сушат в вакуум-эксикаторе над Р2О5. Для предотвращения разложения В12 все операции необходимо проводить в сильно затемненных помещениях или при красном свете. Таким образом можно получить не только смесь CN- и оксикобаламинов, но и коферментную форму, которая обладает высоким терапевтическим эффектом.

Промышленность выпускает различные формы лечебных препаратов кобаламинов: ампулы со стерильным раствором CN – B12, приготовленного на 0,9 % растворе NaCl, таблетки CN — В 12 и в смеси с фолиевой кислотой, таблетки, (муковита), содержащие CN — B 12 и мукопротеид. Лечебные препараты в ампулах: камполон, антианемин и гепавит содержат водный экстракт печени крупного рогатого скота. Перспективны исследования по мутагенезу пропионовокислых бактерий как один из способов повышения продуктивности штамма, а также проверки и внедрения в производственные условия других продуцентов, растущих на дешевом непищевом сырье.

Промышленное получение витамина В12 с помощью пропионовокислых бактерий позволяет полностью удовлетворить потребности медицины. Для обогащения кисломолочных продуктов витамином В12 используют пропионовокислые бактерии как в чистом виде, так и в виде концентрата, приготовленного на молочной сыворотке. Для нужд животноводства витамин В12 получают, используя смешанную культуру, содержащую термофильные метанообразующие бактерии.

Установлено образование корриноидов не только в смешанной, но и в чистой культуре метанобразующих бактерий Methanosarcina barkeri, Methanobacterium formicum при росте в присутствии Н2 и СО2. Содержание корриноидов у метанобразующих бактерий составляет 1,0 — 6,5 мг/г сухой биомассы. С помощью смешанной культуры метанобразующих бактерий разработан метод получения кормового препарата витамина В12 — КМБ12. Субстратом для метанового брожения служит ацетоно-бутиловая и спиртовая барда. Ацетоно-бутиловую барду получают в результате удаления растворителей из культуральной жидкости Clostridium acetobutylicum , сбраживающей паточно-мучные заторы. Для метанового брожения используют декантат барды, содержащий 2,0 — 2,5 % сухих веществ. К декантированной барде добавляют 4 г/м 3 СоС12 и 0,5 % метанола как стимуляторов синтеза кобаламинов. В качестве биостимуляторов вносят также карбамид и диаммонийфосфат, 5,6-ДМБ не вносят, поскольку CN= B12 и фактор III, обладающие биологической активностью, составляют до 80 % от суммы всех корриноидов.

Исходная барда имеет температуру около 100°С и практически стерильна. Перед поступлением в ферментеры барда охлаждается до 55 — 57°С. В качестве исходной культуры используют смешанную культуру метанообразующих бактерий, осуществляющих термофильное метановое брожение сточных вод. Получение концентрата витамина В12 включает следующие технологические стадии: непрерывное сбраживание барды комплексом бактерий, сгущение метановой бражки и сушку сгущенной массы на распылительной сушилке. Брожение проводят в железобетонных ферментерах непрерывным способом в течение года.

Важное условие нормального процесса брожения — контроль уровня жирных кислот и аммонийного азота. Витамин В12 неустойчив при тепловой обработке, особенно в щелочной среде. Поэтому перед выпариванием к метановой бражке добавляют НСl до оптимального значения рН 5,0 — 5,3 и сульфит (оптимальное содержание 0,07 — 0,1 %). Перед поступлением на установку выпаривания метановая бражка дегазируется путем нагревания до 90 — 95°С при атмосферном давлении. Бражку сгущают до 20% сухих веществ в четырехкорпусных выпарных аппаратах. Сгущенная метановая бражка высушивается на распылительной сушилке.

Сухой концентрат КМБ-12, помимо витамина В12 (100 мг/кг препарата), содержит ряд других ростстимулирующих веществ. Особенно хорошие результаты в животноводстве получают при сочетании витамина В12 с малыми дозами антибиотиков, в частности, с биомицином.

См. также:

Дополнительно:

Технология получения витамина В12

Витамин В12 получают путем микробиологического синтеза из Propionobacterium, а также Pseudomonas и смешанных структурных бактерий.

Основной метод включает использование Propionobacterium. Процесс ведут в реакторе объемом 1 м 3 при коэффициенте заполнения 0,65-0,7.

Технология получения В12 включает две стадии:

1) перемешивание в реакторе в течение 80-88 ч в анаэробных условиях до полной утилизации сахара, после чего полученную массу центрифугируют;

2) процесс обработки суспензии во втором аппарате, уже при доступе воздуха; расход воздуха составляет 2м 3 /ч (рис. 6.10). Для питательной среды используют глюкозу, до 10% солей железа, марганца, магния и кобальта (кон­центрация соли колеблется от 10 до 100 мг/л), сульфат аммония.

Рис.1. Технологическая схема получения витамина В12

Выход кристаллического витамина В12 составляет 40 мг/л.

Разработана также технология получения В12 из термических бацилл. Bacillus Circulans в течение 18 ч при температуре 65-75°C в нейтральных условиях. Выход витамина составляет 2-6 мг/л.

Источник:

Разговоров, П.Б.. Технология получения биологически активных веществ: учеб. пособие / П.Б. Разговоров; Иван. гос. хим.-технол. ун-т. — Иваново,2010. — 72 с.. 2010

Читайте также:  Какие витамины минералы нужны для мышц

При наличии желания более подробно ознакомиться с некоторыми нюансами биосинтеза В12 и его промышленного производства рекомендуем к изучению обзорный материал: Piwowarek K, Lipińska E, Hać-Szymańczuk E, Kieliszek M, Ścibisz I. Propionibacterium spp.-source of propionic acid, vitamin B12, and other metabolites important for the industry . Appl Microbiol Biotechnol. 2018 Jan;102(2):515-538.

Ультразвуковая модуляция метаболической активности Propionibacterium freudenreichii subsp. shermanii при получении пищевых продуктов, обогащённых витамином В12

Витамин В12 – одно из важнейших биологически-активных соединений, участвующих во многих процессах в организме человека. В современных условиях жизни часто наблюдается его дефицит, из-за чего необходимо введение в рацион специальных обогащѐнных продуктов. Однако его синтез очень сложен и в настоящее время он является одним из наиболее дорогостоящих витаминов. Статья посвящена модуляции ультразвуком метаболизма основного промышленного продуцента витамина В12 Propionibacterium shermanii с целью повышения эффективности биотехнологического процесса его производства.

Витамин В12 – группа кобальтсодержащих биологически-активных корриноидных соединений, известных как кобаламины. Он также известен как экзогенный (внешний) фактор Кастла, или животный белковый фактор. Витамин В12 осуществляет биокаталитические реакции, обеспечивающие кроветворную функцию организма. Он также способствует нормализации функции печени, благоприятно влияет на регенерацию нервных волокон и активирует созревание форменных элементов крови [2]. Наиболее важными для производства кобаламинами являются цианокобаламин и оксикобаламин благодаря своей стабильности при хранении и высокой биологической активности. Всасывание витамина происходит в тонком кишечнике после взаимодействия в желудке с гастромукопротеином — «внутренним фактором Кастла», который секретируется клетками слизистой оболочки желудка и обеспечивает его абсорбцию. Основным источником витамина являются пищевые продукты животного происхождения, а также микрофлора желудка и кишечника. В организме человека кишечные бактерии также синтезируют витамин В12, но в обычных условиях осуществляют этот синтез в тех областях, где всасывание витамина в кровь не происходит, так как не происходит связывание витамина с внутренним фактором, поэтому основное его количество должно поступать с пищей [2]. В12-гиповитаминоз может возникать при различных обстоятельствах: длительном вегетарианском питании, беременности, хроническом алкоголизме, а также в связи с различными нарушениями его усвоения при заболеваниях желудочно-кишечного тракта, а относительная алиментарная недостаточность витамина наблюдается практически повсеместно, что может быть исправлено введением в рацион специальных обогащѐнных витамином В12 пищевых продуктов. Однако химический синтез витамина В12 отличается высокой сложностью, и в настоящее время его производят биотехнологическими методами.

Одним из важнейших продуцентов витамина являются пропионовокислые бактерии. Морфологически это неподвижные бесспоровые палочки разной величины, от коккообразных до длинных, располагаются единично, парами или короткими цепочками, способные расти как в анаэробных, так и в аэробных условиях. Они активно сбраживают глюкозу, сахарозу, лактозу и пентозы, благодаря чему способны активно развиваться на различных субстратах, например в молочной сыворотке [6]. В клетках Propionibacterium shermanii корриноиды находятся в 5′-аденозильной форме, в виде которой они проявляют свое биокаталитическое действие и осуществляет метаболические функции и в организме человека, однако для их максимального накопления в культуральной среде необходимо создавать специальные условия культивирования [3].

Одним из способов направленного изменения метаболизма в клетках бактерий является обработка жидких сред ультразвуком, под действием которого ускоряются реакции механохимического происхождения, имевшие место в озвучиваемой среде до воздействия ультразвука и инициируются специфические сонохимические реакции, в основе которых лежит механизм разрыва химических связей и образования свободных радикалов [1].

Таким образом, с помощью ультразвуковой обработки можно проводить направленную модуляцию метаболической активности бактерий для обеспечения увеличения конечного выхода витамина В12 без увеличения длительности производственного процесса [5]. Для определения влияния ультразвука на метаболизм бактерий производилось культивирование клеток штамма Propionibacterium freudenreichii ssp. shermanii I-63, используемого в промышленном производстве витамина В12, в субстрате на основе восстановленной молочной сыворотки с концентрацией лактозы 5%, а также добавками 0,002% CoCl2·6H2O и 0,001% MgSO4. рН в процессе культивирования удерживался на уровне порядка 6,9 с помощью периодической нейтрализации среды.

Во время культивирования раз в сутки производилось кратковременное озвучивание сред ультразвуком низкой интенсивности и различной частоты. Для исследования метаболической активности бактерий в процессе культивирования были выбраны метод определения титруемой кислотности для определения количества синтезируемых бактериями органических кислот, по результатам титрования выяснено, что обработка ультразвуком вызывает повышение титруемой кислотности, причѐм на частоте 20 КГц этот эффект более выражен, чем на 22 КГц при одинаковой интенсивности облучения. Следующим этапом был выбор длительности озвучивания; при этом производилось культивирование пропионовокислых бактерий на аналогичной среде с обработкой субстрата ультразвуком на частоте 20 КГц в течение 10 и 20 минут каждые 24 часа.

Для сравнения различных режимов обработки использовались метод определения титруемой кислотности и спектрофотометрический метод для мониторинга состава сброженной сыворотки [4], а также микроскопический метод для сравнения морфологии клеток.

Рис. 1. Микроскопические препараты сброженной сыворотки при различных режимах озвучивания: а) без озвучивания; б) 10 минут; в) 20 минут

При этом выяснено, что при увеличении длительности обработки также увеличивается нарастание титруемой кислотности, а значит, ускоряются процессы брожения и увеличивается активность бактерий; кроме того, как видно на микроскопических препаратах, наблюдаются изменения в морфологии клеток, подвергающихся ультразвуковой обработке, в частности уменьшение их размеров по сравнению с контролем. При фотометрировании сброженной сыворотки после предварительной деструкции клеток и фильтрации среды были получены следующие спектры поглощения:

Рис. 2. Спектры поглощения сброженной сыворотки при различных режимах озвучивания: 1) без озвучивания; 2) 10 минут; 3) 20 минут

Максимумы поглощения света в видимой области образуемых в процессе роста пропионовокислых бактерий корриноидов относятся к порфириновому кольцу и имеют следующие значения: для цианокобаламина – 361 и 548 нм, оксикобаламина – 351 и 525 нм, 5′-дезоксиаденозилкобаламина — 375 нм; а также менее выраженные максимумы при 315, 340 и 522 нм [2,4]. Полученные спектры имеют ярко выраженные максимумы поглощения в областях, близких длине волны 351 (для второго образца), 361 (для первого образца) и 375 нм (для третьего образца), при этом спектры поглощения озвученных проб в коротковолновой части спектра практически совпадают. Благодаря полученным результатам можно сделать вывод, что подбором определѐнных условий озвучивания сред можно также направленно изменять соотношение различных форм витамина в среде при культивировании.

Таким образом, ультразвуковая модуляция метаболизма пропионовокислых бактерий является перспективным направлением для интенсификации промышленного получения витамина В12 и может быть использована также в производстве различных ферментированных пищевых продуктов, обогащѐнных витамином В12 и его аналогами.

Источник: Шершенков Б.С. и др. Ультразвуковая модуляция метаболической активности Propionibacterium freudenreichii subsp. shermanii при получении пищевых продуктов, обогащённых витамином В12 / Б.С. Шершенков, Е.П. Сучкова // Научный журнал НИУ ИТМО. Серия «Процессы и аппараты пищевых производств», 2013. — №4.

Список литературы:

  1. Акопян Б.В., Ершов Ю.А. Основы взаимодействия ультразвука с биологическими объектами: Учеб. пособие / Под ред. С. И. Щукина. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2005. – 224 с.
  2. Беликов В.Г. Фармацевтическая химия. В 2 ч.: Учебн. пособие. – 4-е изд., перераб. и доп. – М.: МЕДпресс-информ, 2007. – 624 с.
  3. Воробъѐва Л.И. Промышленная микробиология: Учеб. пособие. – М.: изд-во МГУ, 1989. – 294 с.
  4. Долгов В.В., Ованесов Е.Н., Щетникович К.А. Фотометрия в лабораторной практике. — М.: Российская медицинская академия последипломного образования, 2004.- 142 с.
  5. Сучкова Е.П., Шершенков Б.С. Технологические решения при получении обогащѐнной витамином В12 молочной сыворотки. / Б.С. Шершенков, Е.П. Сучкова // Научный журнал НИУ ИТМО. Серия «Процессы и аппараты пищевых производств», 2013. — №1. [Электронный ресурс]: http://www.processes.ihbt.ifmo.ru
  6. Шершенков Б.С. Производство витаминизированных продуктов на основе молочной сыворотки. – Сборник трудов молодых учѐных. Ч. I: Сб. тр., с. 3-6. – СПб.: НИУ ИТМО; ИХиБТ, 2012. — 89 с.

Будьте здоровы!

ССЫЛКИ К РАЗДЕЛУ О ПРЕПАРАТАХ ПРОБИОТИКАХ

Источник

Про здоровье и витамины © 2022
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.

Adblock
detector