Меню

Таблица витамин кофермент реакции

КОФЕРМЕНТНАЯ ФУНКЦИЯ ВИТАМИНОВ

Витамины играют важную роль в обмене веществ. В настоящее время известны не только те реакции, для нормального течения которых необходим тот или иной витамин, но и ферменты, в со­став коферментов которых входят витамины (табл. 14). Описано более 100 таких ферментов.

Недостаточное поступление витаминов с пищей, нарушение их всасывания и усвоения, повышенная потребность организма в них могут приводить к специфическим для каждого витамина наруше­ниям обмена веществ и физиологических функций, снижению ра­ботоспособности. Длительный дефицит поступления витаминов вызывает специфические заболевания (гиповитаминозы и авитаминозы).

Таблица Важнейшие коферменты, в состав которых входят витамины

Реакции, катализируемые ферментами

РР (никотиновая кислота)

Перенос атомов водорода в процессе тканевого дыхания и биосинтеза с одного субстрата на другой

Перенос атомов водорода с суб­страта на кислород

Перенос ацетильных или ацильных радикалов (остаток уксусной и жирных кислот)

Перенос одноуглеродистых соединений в процессе биосинтеза (нуклеиновых кислот и др.)­

Окислительное декарбоксилирование кетокислот (пировиноградной, α-кетоглютаровой). Окисление глюкозы в пентозном цикле.

Переаминирование и декарбоксилирование аминокислот и ряд других реакций белкового и аминокислот­ного обмена

Коэнэим В12 (кобамидный

Перенос и образование лабильных метильных групп и другие реакции биосинтеза

ПРИЧИНЫ ВОЗНИКНОВЕНИЯ ДЕФИЦИТА ВИТАМИНОВ В ОРГАНИЗМЕ

Витамины — незаменимые факторы питания. Их запасы в ор­ганизме крайне невелики (за исключением ретинола), поэтому они в необходимых количествах должны поступать с пищей. От содержания витаминов в рационе зависит общая направленность обмена веществ и состояние здоровья (табл. 3).

Одной из часто встречающихся причин повышения потребности организма в витаминах является изменение нормального соотно­шения в пищевом рационе основных усвояемых веществ. Увеличе­ние доли углеводов повышает потребность в витамине В1, белка — в витамине В6, растительных масел — в витамине Е и липотропных факторах. Снижение потребления белка (ниже установленных фи­зиологических норм) увеличивает потребность в большинстве ви­таминов, так как затрудняется их утилизация, построение фермен­тов, в которые они входят.

Усиленные физическая и нервная нагрузки приводят к значи­тельным изменениям обменных процессов, что сопряжено с повы­шенным расходом витаминов.Потребность в витаминах возрастает во время пребывания в высокогорье, при воздействии на организм пониженной и повышен­ной температур воздуха в крайних климатических зонах. Особенно это относится к людям, не акклиматизировавшимся к данному кли­мату.

Витамины поступают в организм с различными продуктами питания; для предупреждения дефицита витаминов и специфиче­ских нарушений обмена они должны поступать систематически и в определенных количествах (табл.3).

Потребность организма взрослого человека в витаминах и их основные источники в питании

Основные источники витаминов в питании

0,6мг на 4000 кДж

Зерновые продукты, не освобожден­ные от периферических частей и обо­лочек. Другие растительные и живот­ные продукты

0,7 мг на 1000 кДж

Молоко, молочные продукты, яица, мясо, овощи

Никотиновая кислота (РР)

6,6 мг на 1000 кДж

Печень, яйца, хлеб ржаной, говядина, сыр, молоко, картофель

Мясо, рыба, картофель, капуста, крупы, хлеб пшеничный

фолиевая кислота (Вс)

Печень, зелень (петрушка, шпинат, салат, лук зеленый), говядина, яйца

Мясные и рыбные продукты, яйца, творог

Аскорбиновая кислота (С)

Картофель, капуста, другие овощи, фрукты, ягоды

1 мг ретиноловых

Читайте также:  Какие витамины нужна для слабый волос

Печень, молоко, рыба, сливочное масло, яйца, сыр

Витамин D (кальцифе- ролы)­

Рыба, рыбные продукты, молоко, масло сливочное

Витамин Е токоферолы

Растительные масла, маргарин, крупы, яйца, печень

В настоящее время количественно определена потребность в 10 витаминах, которая зависит от многих причин. Наиболее существенной причиной считают физическую напряженность труда. Потребность в витаминах К, Р, липоевой и пантотеновой кислотах, биотине, а также в витаминоподобных веществах (оротовой кислоте, витамине В15, холине, парааминобензойной кислоте, инозите и карнитине) определена ориентировочно. Более точно разработаны рекомендации по их использованию с целью направленного воздействия на обмен веществ, что отражено в специальных инструкциях, регламентирующих сроки и дозы применения, в том числе и в спортивной практике.

4. Витаминоподобные вещества

В эту группу входят различные химические соединения, которые частично синтезируются в организме и обладают витаминным действием. Однако некоторые из них могут выполнять и специфические функции или самостоятельно или входя в состав других веществ.

Витамин В4 (холин)- Его недостаток вызывает специфичные расстройства липидного обмена. Содержится в значительных количествах в мясе, различных злаках. Поступая через биологические мембраны в клетки, он принимает участие в биосинтезе ацетилхолина и фосфотидов и поставляет подвижные метильные группы -СН3 при различных реакциях трансаминирования.

Витамин В8 (инозит) — Недостаток вызывает задержку роста у молодняка, облысение и специфические расстройства нервной системы. У человека, заболевания связанные с витамином В8 не установлены.

Оротовая кислота — витамин В13. К витаминам эта кислота относится условно, так как авитаминоз описан только у грызунов и кур. Она является предшественником урацила и цитозина, т. е. может использоваться при биосинтезе пиримидиновых нуклеотидов. С целью стимулирования биосинтеза нуклеиновых кислот и как лечебное средство при нарушениях белкового обмена оротовая кислота применяется в лечебной практике.

Пангамовая кислота — витамин В15. Эта кислота относится к витаминам также условно (неизвестна потребность в ней организма человека и животных). Однако она обнаружена в продуктах питания и обладает рядом ценных свойств, благодаря чему препарат витамина В15 применяются в медицине и спортивной практике. Витамин представляет собой эфир глюконовой кислоты и димецилглицина. Благодаря наличию метильных групп, соединенных с азотом («лабильных» метильных групп), он оказывает положительное влияние на липидный обмен. Витамин В15 стимулирует тканевое дыхание, повышает эффективность использование кислорода тканями, особенно при его недостатке различного происхождения, стимулирует продукцию стероидных гормонов коры надпочечников. Как лечебное средство используется при угрозе жирового перерождения печени, атеросклерозе, состояниях, сопровождающихся кислородным голоданием.

Витамин N (липоевая кислота) – содержится в растительных и животных тканях. Выполняет роль кофермента окислительного декарбоксилирования ПВК и альфа-кетоглутаровой кислоты, как сильный восстановитель снижает потребность в витаминах Е и С, предотвращая их быстрое окисление.

Витамин U (метилметионинсульфоний, противоязвенный фактор) – содержится в овощах, особенно много в капусте, разрушается при варке. Является донором метильных групп, вследствие чего выполняет роль липотропного фактора, используемого при лечении и профилактике жирового перерождения печени. Обладает антигистаминными свойствами, противоязвенной активностью. Применяется при лечении язвенной болезни желудка и 12-перстной кишки, гастритов.

Источник

12. Коферменты и их функции в ферментативных реакциях. Витаминные коферменты. Примеры реакций с участием витаминных коферментов.

КОФЕРМЕНТЫ — низкомолекулярные органические вещества не белковой природы. Они чаще всего содержат в своём составе различные витамины, следовательно, их делят на две группы: 1.Витаминные. 2.Невитаминные.

Читайте также:  Витамины компливит мама при беременности инструкция по применению

1.ТИАМИНОВЫЕ в составе витамин В1 (ТИАМИН) — ТМФ – ТИАМИНМОНОФОСФАТ, ТДФ- ТИАМИНДИФОСФАТ, ТТФ — ТИАМИНТРИФОСФАТ. ТПФ связана с ферментами ДЕКАРБОКСИЛАЗАМИ альфа КЕТОКИСЛОТ (ПВК, альфа КГК)

2.ФЛАВИНОВЫЕ содержат витамин В2 — ФМН – ФЛАВИНМОНОНУКЛЕОТИД, ФАД — ФЛАВИИАДЕНИНДИНУКЛЕОТИД.

ФМН и ФАД связанны с ферментами ДЕГИДРОГЕНАЗАМИ. Участвуют в реакциях ДЕГИДРИРОВАНИЯ.

3. ПАНТОТЕИНОВЫЕ (витамин ВЗ) — KOF A (HS-KOA — HS КОЭНЗИМ А) — КОФЕРМЕНТ АЦИЛИРОВАНИЯ.

4. НИКОТИНАМИДНЫЕ содержат витамин РР (НИАЦИН)- НАД (НИКОТИНАМИДАДЕНИНДИНУКЛЕОТИД), НАДФ (НИКОТИНАМИДАДЕНИНДИНУКЛЕОТИДФОСФАТ). Связаны с ДЕГИДРОГЕНАЗАМИ:

5.ПИРИДОКСИНОВЫЕ содержат витамин В6. ПАФ – ПИРИДОКСАМИНОФОСФАТ, ПФ — ПИРИДОКСАЛЬФОСФАТ.:

1.Реакции ПЕРЕАМИНИРОВАНИЯ (ТРАНСАМИНИРОВАНИЕ). Связан с ферментами АМИНОТРАНСФЕРАЗАМИ.

2.РЕАКЦИИ ДЕКАРБОКСИЛИРОВАНИЯ АК.

13. Свойства ферментов. Лабильность конформации, влияние температуры и рН среды. Специфичность действия ферментов, примеры реакций.

1 .Высокая каталитическая активность. УРЕАЗА повышает скорость реакции в 10 раз.

2.Ферменты проявляют ТЕРМОЛАБИЛЬНЫЕ свойства — чувствительность к изменению температуры. При повышении температуры на каждые 10 градусов, скорость ферментативных реакций повышает в 1,5-2 раза (правило ВАНТ — ГОФФА). Уже при 50-60 градусах наблюдается денатурация, а при 100 гр. — полная денатурация с потерей активности. При понижении температуры структура его сохраняется, поэтому при последующем повышении Т. активность восстанавливается. Температура, при которой фермент проявляет максимальную активность, называется ОПТИМАЛЬНОЙ.

3.Ферменты чувствительны к изменениям РН среды. Ферменты с оптимальными значениями РН в нейтральной среде — КАТАЛАЗа РН=7, в кислой среде (пепсин РН=1,5-2,5), в щелочной среде (АРГИНАЗА РН=10-11). Изменение РН приводит к конформационной перестройке не только активного центра, но и всей молекулы фермента. При оптимальном значении РН функциональные группы активного центра находятся в наиболее реакционно-способном состоянии.

4.Специфичность действия ферментов. Различают следующие виды специфичности:

А) Абсолютная специфичность. Ферменты, которые действуют только на 1 субстрат и не действуют на другие субстраты. УРЕАЗА ГИДРОЛИЗУЕТ МОЧЕВИНУ.

В) СТЕРИОСПЕЦИФИЧНОСТЬ. Ей обладают ферменты, действующие на пространственные или стереоизомеры. ЦИС и ТРАНС изомеры; оптические изомеры (ЭНАНТИОМЕРЫ).

С) Групповая специфичность. Ей обладают ферменты, которые катализируют реакции сходных по строению субстратов. Пример: ЛИПАЗА — участвует в расщеплении ЛИПИДОВ. ПЕПТИДАЗЫ действуют на субстраты с ПЕПТИДНЫми связями.

14. Номенклатура и классификация ферментов. Характеристика класса оксидоредуктаз. Примеры реакций с участием оксидоредуктаз

Каждый класс делится на подклассы. Подклассы делятся на ПОДПОДКЛАССЫ.

Ферменты этого класса участвуют в ОВР. Это наиболее многочисленный класс ферментов (более 400 ОКСИДОРЕДУКТАЗ). 1.АЭРОБНЫЕ ДЕГИДРОГЕНАЗЫ. Они участвуют в реакциях ДЕГИДРИРОВАНИЯ.

Некоторые АЭРОБНЫЕ ДЕГИДРОГЕНАЗЫ называют ОКСИДАЗАМИ. Например, ОКСИДАЗЫ АК.

2.АНАЭРОБНЫЕ ДГ. Эти ферменты также участвуют в реакциях ДЕГИДРИРОВАНИЯ, т.е. отнятия Н2 от окисляемого субстрата и транспортировка его на любой др. субстрат, кроме О2.

3.ПЕРОКСИДАЗЫ. Ферменты, которые отнимают Н2 от окисляемого субстрата и транспортируют его на ПЕРОКСИД.

4.ЦИТОХРОМЫ. Они содержат в своем составе ГЕМ. ЦИТОХРОМЫ участвуют в транспорте только электронов.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Читайте также:  Маска тканевая гарньер с витамином с

Источник

Витамины

Витамины – это необходимые для нормальной жизнедеятельности низкомолекулярные органические соединения, синтез которых у организмов данного вида отсутствует или ограничен.

Витамины и их производные являются активными участниками биохимических и физиологических процессов, протекающих в живых организмах (табл. 10).

В организмах млекопитающих большинство витаминов не синтезируется, а некоторые синтезируются кишечной микрофлорой или тканями в недостаточных количествах, поэтому витамины должны поступать с пищей. Некоторые микроорганизмы и высшие растения также нуждаются в определенных витаминах.

Особенности функционирования витаминов в живых организмах заключаются в следующем: 1) практически не синтезируются в организме; 2) источником витаминов служит пища и/или кишечные бактерии; 3) содержатся в организме в небольших количествах; 4) не входят в состав пластического материала организма и не используются в качестве источника энергии; 5) в большинстве случаев выполняют коферментные функции (табл. 11).

Для обозначения каждого витамина существует буквенное латинское обозначение (например, витамины группы В), химическое (например, никотиновая кислота) и физиологическое названия (например, витамин роста). Отдельные витамины могут быть представлены группой соединений, близких по химическому строению и проявляющих близкую биологическую активность, называемых витамерами (например, витамин А может быть представлен витамерами А1 и А2).

Классификация витаминов. По растворимости в воде и жирах витамины подразделяют на две группы: водорастворимые и жирорастворимые (табл. 10). В каждой из этих групп, наряду с витаминами, выделяют витаминоподобные соединения, выполняющие функции витаминов, но требующиеся организму в сравнительно больших количествах (табл. 12).

Суточная потребность в витаминах невелика, но при недостаточном или избыточном поступлении витаминов в организме наступают характерные и опасные патологические состояния: 1) авитаминоз – комплекс симптомов, развивающихся в организме в результате достаточно длительного полного или почти полного отсутствия одного или нескольких (полиавитаминоз) витаминов; 2) гипо- и гипервитаминозы – болезни, вызванные, соответственно, недостаточным или избыточным поступлением витамина или нескольких витаминов (полигипо- и полигипервитаминозы).

Вещества, структурно подобные витаминам, которые при взаимодействии с апоферментом образуют неактивные формы ферментов, называются антивитаминами и находят применение в медицинской практике для лечения ряда заболеваний (например, сульфаниламидные препараты).

Биохимическая функция витаминов

Витамин А (ретинол)– зрительный процесс (регулирует рост и дифференцировку клеток)

Витамин Д (кальциферол)- обмен кальция и фосфора

Витамин Е (токоферол)- антиоксидант, транспорт электронов (защита мембранных липидов)

Витамин К (филлохинон)- перенос электронов (кофактор в реакциях карбоксилирования) участвует в активации факторов свертывания крови

Витамин В1 (тиамин)– декарбоксилирование α-кетокислот, перенос активного альдегида (транскетолаза)

Витамин В2 (рибофлавин)– дыхание, перенос водорода

Витамин РР (никотиновая кислота)- дыхание, перенос водорода

Витамин В6 (пиридоксин) – обмен аминокислот, перенос аминогрупп

Витамин В12 (кобаламин)– кофермент ряда метаболических реакций переноса алкильных групп, метилирование цистеина

Фолиевая кислота – транспорт одноуглеродных групп

Витамин В3 (пантотеновая кислота) – транспорт ацильных групп

Витамин Н (биотин) – кофермент реакций карбоксилирования (транспорт СО2)

Витамин С – антиоксидант, восстанавливающий кофактор для ряда оксигеназ, гидроксилирование пролина, лизина, катаболизм тирозина

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Источник

Adblock
detector