Меню

Строение витаминов их физико химические свойства

Химическая структура витаминов. Физические, химические и биологические свойства

ВИТАМИНЫ

Витамины – органические вещества различной химической природы, не образующиеся в достаточном количестве клетками человеческого организма, но необходимые для его нормальной жизнедеятельности. Витамины проявляют биологическую активность в очень малых концентрациях. Они выполняют функции регуляторов обмена веществ. Большинство витаминов входит в состав ферментов, являясь их коферментами.

Приоритет открытия витаминов принадлежит русскому врачу Николаю Ивановичу Лунину. В 1880 г. Н.И. Лунин писал, что в пище, кроме «казеина, жира, молочного сахара и солей, содержатся еще другие вещества, незаменимые для питания».

Термин «витамины» был предложен польским ученым Казимиром Функом в 1912 году от лат. «vita» — «жизнь», т.е. дословно термин означает «амины жизни». Поскольку первое выделенное в кристаллическом виде вещество, а это был тиамин (B1) из отрубей риса, содержало азот, то К. Функ предполагал, что наличие азота характерно для всех витаминов. Термин «витамины» не точен, но сохранился до настоящего времени.

Классификация витаминов и витаминосодержащего лекарственного растительного сырья

Существует несколько классификаций витаминов.

1. Буквенная классификация— первая в историческом плане. При обнаружении новых факторов витаминной природы им присваивали условные названия в виде буквы латинского алфавита. Например: витамины A, B, C, D и др.

2. Фармакологическая классификация.Эта классификация вводилась параллельно с буквенной и указывала на заболевание, от которого предохраняет витамин:

· витамин С — противоцинготный;

· витамин К — антигеморрагический;

· витамин D — антирахитический и др.

3. Химическая классификация.В зависимости от химической структуры выделены группы:

· витамины алифатического ряда — С, F и др.;

· витамины алициклического ряда — A, D и др.;

· витамины ароматического ряда — К и др.;

· витамины гетероциклического ряда — Е, Р и др.

4. Классификация по растворимости витаминов:

· водорастворимые витамины – группы В, С, Р, Н, РР;

· жирорастворимые витамины — A, D, Е, К, F, U.

Витамины содержатся во всех растениях, но витаминосодержащими называют только те растения, которые избирательно накапливают витамины в дозах, способных оказать выраженный фармакологический эффект. Это в 500-1000 раз больше, чем в других растениях.

В настоящее время практически все витамины получают синтетическим путем. Однако витаминосодержащие лекарственные растения не утратили своего значения. Они широко используются, особенно в педиатрии, в гериатрии и для лечения лиц, склонных к аллергическим заболеваниям, поскольку:

· во-первых, витамины в лекарственном растительном сырье находятся в комплексе с полисахаридами, сапонинами, флавоноидами, поэтому такие витамины легче усваиваются;

· во-вторых, растительные витамины реже дают аллергические реакции, чем их синтетические аналоги;

· в-третьих, в организме человека есть специальные системы защиты от передозировки витаминов (например, каротин в организме человека превращается в витамин А по мере необходимости).

Лекарственное растительное сырье, содержащее витамины

1. Концентраторы витамина С: плоды черной смородины, плоды шиповника, плоды рябины, плоды малины, листья крапивы, плоды и листья земляники.

2. Концентраторы и источники витамина Р: бутоны и плоды софоры японской, плоды аронии (рябины) черноплодной, плоды черной смородины, кожура плодов цитрусовых, листья чая.

3. Концентраторы каротиноидов (провитаминов А): плоды шиповника, плоды облепихи, плоды рябины, цветки календулы, трава череды, трава сушеницы топяной.

4. Концентраторы витамина К: листья крапивы, трава пастушьей сумки, трава тысячелистника, цветки и листья зайцегуба, кора калины, кукурузные рыльца.

5. Концентраторы витамина Е: плоды облепихи, облепиховое масло, масло шиповника, кукурузное масло, льняное масло, семена тыквы.

6. Концентраторы витамина F: масло кукурузное, масло подсолнечное и другие растительные жирные масла.

В лекарственном растительном сырье довольно часто встречаются витамины группы В: В2 — рибофлавин, В5 — пантотеновая кислота, В9 — фолиевая кислота, провитамин витаминов группы D — эргостерол и другие фитостеролы.

В высоких концентрациях способны накапливаться только кислота аскорбиновая (витамин С), каротиноиды (провитамин А), витамин К1 (филлохинон) и некоторые флавоноиды (рутин, кверцетин и др.), относимые к витамину Р.

Химическая структура витаминов. Физические, химические и биологические свойства

Витамин С– аскорбиновая кислота.

гамма-лактон 2,3-дегидро-альфа-гулоновой кислоты (гексуроновая кислота)

Существует в двух формах — аскорбиновой и дегидроаскорбиновой кислот. Обе формы легко переходят друг в друга при соответствующих условиях, обе формы одинаково фармакологически активны. Аскорбиновая кислота – белый кристаллический порошок, кислого вкуса. Легко растворяется в воде и спирте, не растворяется в органических растворителях: эфире, хлороформе, бензоле. Аскорбиновая кислота – нестойкое вещество. В водных растворах она легко разрушается под действием кислорода воздуха, света; следы железа и меди ускоряют процесс разрушения (окисления).

Читайте также:  От витаминов солгар выпадают волосы

Аскорбиновая кислота участвует в окислительно-восстановительных реакциях, в том числе в липидном и пигментном обмене, активирует протромбин, обладает десенсибилизирующем действием, поднимает жизненный тонус организма и повышает сопротивляемость к экстремальным воздействиям. Недостаток витамина С вызывает цингу, или скорбут (рыхлость десен, выпадение зубов, кровоизлияния).

Витамин Р – полифенольные гетероциклические соединения группы флавоноидов.

Эпикатехин листьев чая (производное флаванола) Эриодиктиол кожуры цитрусовых (производное флаванона)
Кверцетин плодов аронии черноплодной и бутонов софоры японской (производное флавонола)

Физические и химические свойства описаны в разделе «Флавоноиды».

Укрепляют стенки кровеносных сосудов и капилляров.

Каротиноиды – предшественники (провитамины) витамина А – жирорастворимые растительные пигменты желтого, оранжевого или красного цвета. По своей химической природе являются тетратерпеноидами с общей формулой [(С5H8)2]4, или С40Н64 (см. раздел «Терпеноиды»).

В растениях каротиноиды находятся в виде ненасыщенных углеводородов – каротинов — и кислородсодержащих производных – ксантофиллов. Представлены приблизительно 70 соединениями, но провитаминами А являются 9 веществ. Каротиноиды играют важную роль в процессах фотосинтеза, дыхания, участвуют в окислительно-восстановительных реакциях, оплодотворении. Каротиноиды синтезируются высшими растениями, грибами и бактериями. Животные не способны их синтезировать.

Широко распространены в растениях альфа-, бета- и гамма-каротины, ликопин, зеаксантин, виолаксантин и др. Наибольшую биологическую активность проявляет бета-каротин, в результате окислительно-гидролитического расщепления которого в тканях животных и человека образуется две молекулы витамина А, из остальных – одна молекула.

Каротиноиды нерастворимы в воде, растворимы в жирных маслах, хлороформе, эфире, ацетоне, бензине и трудно растворимы в спирте. Легко окисляются кислородом воздуха, разрушаются на свету.

Витамин А (ретинол) способствует нормализации обмена веществ, росту и развитию организма, регенерации тканей, обеспечивает нормальную деятельность органов зрения. Недостаток вызывает ухудшение сумеречного зрения («куриную слепоту»), сухость роговицы, поражение слизистых.

Источниками промышленного получения бета-каротина служат свежие корнеплоды моркови посевной и свежая мякоть плодов различных сортов тыквы.

Витамины группы К — производные 2-метил-1,4-нафтохинона. В природе данные витамины представлены несколькими соединениями, в высших растениях находится только витамин К1, или филлохинон.

Витамин К1 (филлохинон)

Длинная боковая изопреноидная цепь витамина K1 является остатком дитерпенового алифатического спирта фитола (см. раздел «Терпеноиды»).

Витамин K1 — филлохинон — вязкое маслообразное вещество желтого цвета. Нерастворим в воде, растворим в жирных маслах и органических растворителях. Стоек при длительном кипячении с водой, но быстро разрушается при нагревании в растворах щелочей. Флуоресцирует в УФ-свете красным светом, затем флуоресценция становится зеленой, а под действием спиртового раствора калия гидроксида — оранжевой. Витамин K1 легко окисляется, быстро разрушается под действием УФ-лучей.

Витамины группы К участвуют в свертывании крови, индуцируя образование протромбина (антигеморрагический фактор). Недостаток вызывает замедление свертывания крови и кровоизлияния.

Витамины группы Е— производные хромана. Витамины Е — смесь высокомолекулярных спиртов – токоферолов. Наиболее активен бета-токоферол.

Токоферолы не растворяются в воде, растворимы в жирных маслах и органических растворителях. Соединения нестойкие, легко разрушаются под действием света и кислорода воздуха.

Витамины группы Е являются природными антиоксидантами, участвуют в биосинтезе белков, тканевом дыхании, процессах размножения, влияют на состояние сердечно-сосудистой и нервной систем.

Витамины группы F— высоконепредельные жирные кислоты с 18-20 углеродными атомами: линолевая – С17Н31СООН, линоленовая — С17Н29СООН, арахидоновая — С19Н31СООН — кислоты.

Физические и химические свойства описаны в разделе «Жирные масла». Участвуют в липидном обмене, препятствуют отложению холестерина на стенках кровеносных сосудов. Из витаминов F в тканях образуются простагландины.

Витамины, в целом, участвуют в окислительно-восстановительных процессах в организме. Многие из них (витамины С, Р, К, Е, каротиноиды) являются природными антиоксидантами. Они защищают клеточные и субклеточные мембраны от повреждения активными свободными радикалами, нейтрализуя активные свободные радикалы путем связывания их непарных электронов.

Источник

Тема 2. Витамины. Лекция 2

Вопрос 1.Витамины. Общая характеристика. Классификация.

Вопрос 2.Водорастворимые витамины: строение, биологическая активность, свойства, методы получения.

Вопрос 3.Жирорастворимые витамины: строение, биологическая активность, свойства, методы получения.

Вопрос 4. Методы определения витаминов.

Вопрос 1.Витамины – это низкомолекулярные органические соединения различной химической природы, являющиеся биорегуляторами процессов, протекающих в живом организме. В связи с отсутствием механизмов биосинтеза витаминов в организме или их ограниченностью (малая скорость) они должны ежедневно поступать с пищей в малых количествах от нескольких мкг до нескольких мг в сутки (за исключением витамина Д, который может синтезироваться в коже человека под действием УФ-лучей). В отличие от других незаменимых факторов питания витамины не являются пластическим материалом (не включатся в структуру тканей) и источником энергии, а исключительно используются организмом в основном в обмене веществ как биокатализаторы (почти все водорастворимые витамины, а также жирорастворимый витамин К, являются кофакторами или коферментами биологических катализаторов – ферментов). Стоит отметить, что для разного рода живых существ одно и то же вещество может либо являться, либо не являться витамином. Например, аскорбиновая кислота является витамином для человека, а вот крысы или собаки не нуждаются в ней, поскольку она может синтезироваться в их организмах.

Читайте также:  Выпадение зубов признак недостатка витамина

Исторический очерк. Людям еще с глубокой древности было известно, что отсутствие некоторых продуктов питания в пищевом рационе может быть причиной заболевания (бери-бери, куриная слепота, цинга, рахит). Но только в 1880 году русским ученым Николаем Ивановичем Луниным была экспериментально доказана в опытах на мышах необходимость неизвестных компонентов пищи (то есть не только белков, углеводов, жиров и минеральных веществ) для нормального функционирования организма. Название же витамины получили по предложению польского биохимика К.Функа. В 1912 году он выделил из рисовых отрубей вещество (витамин В1), предохраняющее от заболевания бери-бери и назвал его витамин от слов Vita — жизнь (лат.) и амин, поскольку соединение содержало аминогруппу.

Классификация.Основана на их растворимости в воде или неполярных органических растворителях, либо химическом строении.

Согласно первой различают:

— водорастворимые – витамины группы В, Н, С, РР;

— жирораствоимые – витамины А, Д, Е и К.

По своей химической структуре витамины многообразны и являются производными ненасыщенных γ-лактонов, β-аминокислот, амидов кислот, циклогексана, нафтохинона, имидазола, пиридина, пиримидина, пиролла, бензопирана, тиазола, изоаллоксазила и других циклических систем. Согласно химической классификации витамины делят на:

— витамины алифатического ряда – С, В3;

— витамины алициклического ряда – А и Д;

— витамины ароматического ряда – К;

Помимо витаминов различают также витаминоподобные соединения — группу разнообразных химических веществ, частично синтезируемых организмом и обладающих свойствами витаминов. К ним относят холин (витамин В4), липоевая кислота, пангамовая кислота (витамин В15), оротовая кислота (витамин В13), инозит (витамин Н3), убихинон, парааминобензойная кислота (витамин Н1), карнитин, линолевая и линоленовая кислоты, витамин U, биофлавоноиды (витамин Р) и пр.

В отдельных продуктах содержаться провитамины – соединения способные превращаться в организме человека в витамины (каротиноиды, стерины, производные нафтохинона, никотиновая кислота).

Обеспечение организма витаминами. При нормальном питании суточная потребность организма в витаминах удовлетворяется полностью. Недостаточное или неполноценное питание (например, несбалансированная диета у пожилых людей, недостаточное питание у алкоголиков, потребление полуфабрикатов) или нарушение процессов усвоения и использования витаминов могут быть причиной различных форм витаминной недостаточности, вплоть до авитаминоза. Важная роль в обеспечении организма рядом витаминов (К, B12, H) принадлежит микрофлоре пищеварительного тракта. Поэтому дефицит витаминов может возникать вследствие медикаментозного лечения с использованием антибиотиков.

Только немногие из витаминов, такие, как A, D, Е, В12, могут накапливаться в организме. Поэтому витаминная недостаточность быстро влечет за собой болезни витаминодефицита, затрагивающие состояние кожи, клетки крови и нервную систему организма. Витаминная недостаточность излечивается посредством полноценного питания или с помощью витаминных препаратов. Явление гипервитаминоза касается лишь витаминов А и D. Избыточное количество большинства других витаминов быстро выводится из организма с мочой.

Витаминная недостаточность возникает также тогда, когда в пищевых продуктах содержатся вещества, подавляющие активность витаминов – антивитамины. По механизму их делят на три группы:

— структурные аналоги витаминов;

— ферменты, разрушающие витамины;

— соединения, дающие прочные комплексы с витаминами.

Вопрос 2.

Витамины группы В:

Витамин В1 – тиамин – является производным пиримидина и тиазола.

Строение:
Биологическая активность: Антиневритный, регуляция углеводного, жирового, минерального и водного обмена.
Активная форма: тиаминдифосфат (синонимы тиаминпирофосфат, кокароксилаза) – простетическая группа ряда ферментов, биологическая функция которой декарбоксилирование пировиноградной кислоты и расщепление С-С связей α-кетокислот и α-кетоспиртов. С током крови всосавшийся тиамин попадает вначале в печень, где фосфорилируется тиаминпирофосфокиназой, а затем переносится в другие органы и ткани:
Физико-химические свойства: хорошо растворим в воде (100 г на 100 см 3 ), стоек к действию кислорода, кислот, редуцирующих веществ, легко разрушается в нейтральной и щелочной средах. Чувствителен к действию температуры и света.
Суточная потребность: 1,1-1,5 мг
Источники: хлеб из муки грубого помола, соя, фасоль, горох, дрожжевые продукты, нежирная свинина, печень, почки, мозг, яичный желток
Методы получения: Химический синтез заключается в раздельном получении пиримидинового и тиазольного компонентов с последующей их конденсацией Биологического способа синтеза нет.
Читайте также:  Можно ли пить витамин с после операции

Витамин В2 — рибофлавин —состоит из флавинового красящего вещества люминохрома и спирта рибитола

Строение:
Биологическая активность: Витамин роста
Активная форма: флавинмононуклеотид флавинадениндинуклеотид (ФМН) (ФАД)
Физико-химические свойства: стабилен в кислой среде, легко разрушается в нейтральной и щелочной средах, чувствителен к УФ и видимому свету
Суточная потребность: 1,5-2,0 мг
Источники: печень, почки, яичный желток, творог, дрожжи. Частично дефицит восполняется кишечной микрофлорой.
Методы получения: Химический синтез заключается в получении 3,4-диметил-6-аминофенил-Д-рибамина и его конденсация с аллоксаном или дихлорбарбитуратовой кислотой Биологический способ синтеза заключается в культивировании бактерий (Sarcina lutea)или грибов (Eremothecium ashbyii), образуюших 0,5 г и более рибофлавина в 1 л среды.

Витамин В3 – пантотеновая кислота-состоит β–аланина и пантоевой кислоты.

Антидерматитный, активация карбоновых кислот

В свободном виде нестабильное и чрезвычайно гигроскопичное соединение. Обычно используется в виде солей кальция и натрия, которые хорошо растворимы в воде, устойчивы к действию кислорода, света. Нестабильны при нагревании, особенно в кислой или щелочной среде.

печень, яичный желток, молоко, рыба, бобовые, свежие фрукты и овощи, пивные дрожжи, пчелиное маточное молочко

Химический синтез заключается в конденсации этилового эфира β–аланина и пантолактона.

Биологического способа синтеза нет.

Витамин В5 – никотиновая кислота и её амид (никотинамид)

Строение:
Активная форма:
Физико-химические свойства:

Антипеллагрический, входит в состав ферментов, участвующих реакциях, сопряженных с переносом водорода

никотинамидадениндинуклеотид

никотинамид лучше, чем никотиновая кислота растворим в воде, водные растворы витаминов устойчивы к действию кислорода, свету, повышенной температуре

мясо, печень, почки, арахис, грибы, дрожжи

Химический синтез применяется для получения витамина в промышленном масштабе. Например, путем окисления 2-метил-5-этилпиридина азотной кислотой под давлением.

Биологического способа синтеза нет.

ВИТАМИН В6ПИРИДОКСИН, ПИРИДОКСАЛЬ, ПИРИДОКСАМИН

Строение:
Физико-химические свойства:
Строение:
Биологическая активность: Антидерматитный, в качестве кофермента пиридоксальфосфата в пиридоксальных ферментах азотистого обмена участвует в обмене аминокислот, ненасыщенных жирных кислот, холестерола
Активная форма: «Король обмена аминокислот»
Физико-химические свойства: хорошо растворим в воде, в кислой среде устойчив к действию кислорода и повышенной температуре. Разрушается на свету и в щелочной среде.
Суточная потребность: 2,0-2,5 мг
Источники: мясные, рыбные, молочные продукты, зерновые, бобовые культуры, зеленые овощи. Может синтезироваться микрофлорой кишечника.
Методы получения: Химический синтез применяется для получения витамина в промышленном масштабе. Например, через производные нитрила никотиновой кислоты. Биологического способа синтеза нет.

ВИТАМИН В9 – ФОЛИЕВАЯ КИСЛОТА — ФОЛАЦИН

Строение:
Биологическая активность: Участвует в процессах кроветворения, переносе одноуглеродных радикалов, синтезе амино- и нуклеиновых кислот, холина, пуриновыз и пиримидиновых оснований в качестве кофермента тетрагидрофолиевой кислоты соответсвующих ферментов. Ф.К. необходима для деления клеток, роста органов, нормального развития зародыша и плода, функционирования нервной системы.
Активная форма: АНТИАНЕМИЧЕСКИЙ
Физико-химические свойства: хорошо растворим в щелочах, плохо в воде. Разрушается на свету и при нагревании
Суточная потребность: 0,2 мг
Источники: шпинат, салат, капуста, томаты, земляника, печень, мясо, яичный желток
Методы получения: Химический синтез применяется для получения витамина в промышленном масштабе. Путем одностадийной конденсации 2,4,5-триамино-6-оксипиримидина и 2,3-дибромпропионовым альдегидом с п-аминобензоил-L-глутаминовой кислотой. Биологического способа синтеза нет.

ВИТАМИН В12 – ЦИАНКОБАЛАМИН

Строение:
Биологическая активность: АНТИАНЕМИЧЕСКИЙ
Активная форма: 5-дезоксиаденозилкобаламин Участвует в процессах кроветворения, превращениях аминокислот, биосинтезе нуклеиновых кислот.
Физико-химические свойства: слабо растворим в воде, не устойчив при действии световых лучей, в кислой и щелочной среде; термостабилен
Суточная потребность: 0,003мг
Источники: исключительно продукты животного происхождения. Может синтезироваться микрофлорой кишечника.
Методы получения: Химический синтез не применяется. Биологический способ синтеза заключается в культивировании пропионовокислых и метанообразующих бактерий

ВИТАМИН С – АСКОРБИНОВАЯ КИСЛОТА — является γ-лактоном, близким пос троению к глюкозе. Биологически активна только L-аскорбиновая кислота, которая образует редокс-пару с дегидроаскорбиновой кислотой.

Источник

Adblock
detector