Меню

Синтез гема витамин в12

Синтез гема витамин в12

Гемоглобин — это гемопротеин, с молекулярной массой около 60 тыс., окрашивающий эритроцит в красный цвет после связывания молекулы O2 с ионом железа (Fe++). У мужчин в 1 л крови содержится 157 (140—175) г гемоглобина, у женщин — 138 (123—153) г. Молекула гемоглобина состоит из четырех субъединиц гема, связанных с белковой частью молекулы — глобином, сформированной из полипептидных цепей.

Синтез гема протекает в митохондриях эритробластов. Синтез цепей глобина осуществляется на полирибосомах и контролируется генами 11-й и 16-й хромосом. Схема синтеза гемоглобина у человека представлена на рис. 7.2.

Гемоглобин, содержащий две а- и две В-цепи, называется А-тип (от adult — взрослый). 1 г гемоглобина А-типа связывает 1,34 мл O2. В первые три месяца жизни плода человека в крови содержатся эмбриональные гемоглобины типа Gower I (4 эпсилон цепи) и Gower II (2а и 25 цепи). Затем формируется гемоглобин F (от faetus — плод). Его глобин представлен двумя цепями а и двумя В. Гемоглобин F обладает на 20—30 % большим сродством к O2, чем гемоглобин А, что способствует лучшему снабжению плода кислородом. При рождении ребенка до 50—80 % гемоглобина у него представлены гемоглобином F и 15—40 % — типом А, а к 3 годам уровень гемоглобина F снижается до 2 %.

Соединение гемоглобина с молекулой 02 называется оксигемоглобином. Сродство гемоглобина к кислороду и диссоциация оксигемоглобина (отсоединения молекул кислорода от оксигемоглобина) зависят от напряжения кислорода (Р02), углекислого газа (РС02) в крови, рН крови, ее температуры и концентрации 2,3-ДФГ в эритроцитах. Так, сродство повышают увеличение Р02 или снижение РС02 в крови, нарушение образования 2,3-ДФГ в эритроцитах. Напротив, повышение концентрации 2,3-ДФГ, снижение Р02 крови, сдвиг рН в кислую сторону, повышение РС02 и температуры крови — уменьшают сродство гемоглобина к кислороду, тем самым облегчая ее отдачу тканям. 2,3-ДФГ связывается с р-цепями гемоглобина, облегчая отсоединение 02 от молекулы гемоглобина.

Увеличение концентрации 2,3-ДФГ наблюдается у людей, тренированных к длительной физической работе, адаптированных к длительному пребыванию в горах. Оксигемоглобин, отдавший кислород, называется восстановленным, или дезоксигемоглобином. В состоянии физиологического покоя у человека гемоглобин в артериальной крови на 97 % насыщен кислородом, в венозной — на 70 %. Чем выраженней потребление кислорода тканями, тем ниже насыщение венозной крови кислородом. Например, при интенсивной физической работе потребление кислорода мышечной тканью увеличивается в несколько десятков раз и насыщение кислородом оттекающей от мышц венозной крови снижается до 15 %. Содержание гемоглобина в отдельном эритроците составляет 27,5—33,2 пикограмма. Снижение этой величины свидетельствует о гипохромном (т. е. пониженном), увеличение — о гиперхромном (т. е. повышенном) содержании гемоглобина в эритроцитах. Этот показатель имеет диагностическое значение. Например, гиперхромия эритроцитов характерна для В|2-дефицитной анемии, гипохромия — для железодефицитной анемии.

Источник

Синтез гема витамин в12

Поражение крови, обусловленное первичным нарушением синтеза гема, вызывают свинец и его соединения. Механизм токсического действия свинца на кровь характеризуется вмешательством его в порфириновый обмен, в частности в процесс синтеза гема, представляющего собой железопорфирин. Биосинтез гема осуществляется в основном в митохондриях эритробластов костного мозга и представляет собой сложный многоступенчатый ферментативный процесс. Как известно, исходным продуктом синтеза гема является глицин вместе с сукцинил КоА. Последний образуется из янтарной кислоты и коэнзима А. При взаимодействии глицина с сукцинил КоА вначале образуется а-амино-кетоадипиновая кислота.

Фактически первый этап синтеза гема — это синтез дельтааминолевулиновой кислоты (АЛК) в янтарно-глициновом цикле при участии фермента синтетазы АЛК при условии, что коферментом этой реакции служит производное витамина В6-пиридоксальфосфат. Следующая ступень синтеза — превращение АЛК в порфобилиноген под влиянием дегидратазы АЛК. Далее через промежуточные продукты синтеза уро- и копропорфирин, после воздействия на последний фермента декарбоксилазы (копрогеназы) образуется непосредственный предшественник гема протопорфирин. Превращение протопорфирина в гем осуществляется благодаря включению в его молекулу двухвалентного железа, причем катализатором этого процесса является фермент гемосинтетаза.

Читайте также:  Записать продукты содержащие витамина с

Угнетающее действие свинца на биосинтез гема обусловлено его ингибирующим влиянием на ферменты, катализирующие синтез гема. Сущность такого ингибирующего влияния заключается в том, что свинец блокирует функционально активные центры ферментов: сульфгидрильные (SH), карбоксильные и аминные группы. Особенно характерной является блокада SH-rpyrm ферментов, участвующих в синтезе гема, что, впрочем, свойственно всем «тиоловым» ядам, к которым принадлежит и свинец.

В результате падения активности фермента дегидратазы АЛК образуется ток АЛК, которая в повышенных количествах выделяется с мочой. Одновременно с тормозящим действием свинца на дегидратазу АЛК аналологичное воздействие оказывается и на ферменты декарбоксилазу и гемсинтетазу. Вследствие этого в эритроцитах накапливается избыток уро- и протопофирина. Причем по мере усугубления свинцовой интоксикации соотношение между количеством избыточного количества копро- и протопорфирина смещается в сторону последнего. Такое изменение первоначальной пропорции между копро- и протопорфирином, по-видимому, обусловлено двояким влиянием свинца на порфириногенез.

С одной стороны, уровень протопорфирина возрастает за счет стимулирования на первом этапе декарбоксилирования копропорфирина (фермент копрогеназа) с превращением его в протопорфирин, а с другой стороны, уровень последнего возрастает благодаря торможению процесса включения железа в протопорфириновое кольцо. По мере развития интоксикации стимулирующее влияние на декарбоксилирование копропорфирина снижается, однако дисбаланс в содержании копро- и протопорфирина в крови с преобладанием последнего сохраняется. Это объясняется усиленным выведением копропорфиринов с мочой, тогда как для протопорфирина почечный барьер непреодолим. Следовательно, в целом сдвиг соотношения копропорфирин/протопорфирин объясняется опять-таки двумя механизмами: гиперпродукцией протопорфирина с нарушением его утилизации, а также усиленным выведением копропорфирина с мочой. Помимо традиционного пути образования протопорфирина из копропорфирина, возможно его образование непосредственно из АЛК.

Особенности вмешательства свинца в обмен порфиринов определяет появление ранних признаков его воздействия на организм. Так, самыми ранними диагностическими показателями влияния свинца на систему крови служит появление в моче дельтааминолевулиновои кислоты в сочетании с копропорфиринурией, а также протопорфиринемия. Угнетение биосинтеза гема как такового приводит к дефициту гемоглобина. Поскольку при этом нарушается включение железа в молекулу протопорфирина, в эритробластах и эритроцитах появляется избыток неутилизированного железа (в виде гранул), вследствие чего они превращаются в сидеробласты и сидероциты.

Нарушение синтеза гемоглобина приводит к стимуляции красного ростка костного мозга, что сопровождается ретикулоцитозом и появлением базофильно-зернистых эритроцитов, что свидетельствует об омоложении красной крови. При этом ретикулоцитоз и базофильная пунктация эритроцитов обычно регистрируются параллельно. Существует точка зрения, согласно которой базофильная зернистость имеет протоплазматическую природу и появление ее обусловлено усилением регенераторной активности в сфере эритропоэза. По мнению И.А.Кассирского (1970), базофильная зернистость в эритробластах и эритроцитах является следствием дезинтеграции кислого коллоида, т.е. рибонуклеиновой кислоты, содержащейся в ретикулуме, что служит достоверным доказательством ее костномозгового происхождения.

Примечательно, что увеличение числа базофильно-зернистых эритроцитов не всегда сопровождается анемией так же, как и ретикулоцитоз. Поэтому оба эти симптома являются наиболее ранними признаками изменений в системе красной крови. При этом базофильная зернистость не является строго специфичной для токсического воздействия свинца, появляясь и под влиянием других ядов крови (бензол, мышьяковистый водород, оксид углерода, анилиз), а также нейротоксических веществ (сероводород, сероуглерод, бензин и т.д.), однако наиболее закономерно ее появление при поступлении в организм свинца. Все же чрезвычайная лабильность этого признака — быстрое появление и столь же быстрое исчезновение базофильно-зернистых эритроцитов даже при непрерывном контакте со свинцом отсутствие корреляции с признаками анемии снижает диагностическую ценность базофильной зернистости, если она регистрируется изолированно в отсутствие других показателей свинцовой интоксикации.

Читайте также:  Витамины важнейшие витамины для организма человека

Источник

Синтез гема витамин в12

Цианокобаламин (Витамин В12)

CAS номер: 68-19-9
Брутто формула: C63H88CoN14O14P
Внешний вид: порошок темно-красного цвета без запаха
Химическое название и синонимы: Cyanocobalamin, Cyano-5,6-dimethylbenzimidazole-cobalamin; Vitamin B12.
Физико-химические свойства:
Молекулярная масса 1355.38 г/моль
Растворимость: в воде растворим.
pH: aq solns являются нейтральными
Давление паров: незначительное.
Плотность паров: нет.
Скорость испарения: незначительная.
Вязкость: отсутствует.
Температура замерзания / плавления:> 300 ° C
Температура разложения: недоступна.
Растворимость: умеренно растворим в воде.
Химическая стабильность: Стабилен при нормальных температурах и давлениях. Может разлагаться, когда подвергается воздействию света. Условия, которых следует избегать: свет, пыль, избыток тепла.
Несовместимость с другими материалами: сильные окислители, сильные кислоты.
Опасные продукты разложения: окись углерода, оксиды азота, оксиды фосфора, диоксид углерода, оксиды кобальта.

Витамин В12 (Кобаламин) – встречается большей степенью в печени, красном мясе, рыбе и почках. Организм человека может также сам синтезировать Витамин В12 в толстом отделе кишечника с помощью микроорганизмов, но так как всасывается витамин в подвздошной кишке, то польза от аутогенного кобаламина сомнительная.

B12 представляет собой тетрапиррольный комплекс, который содержит кобальт в молекуле и может относиться к нескольким формам кобаламина: цианокобаламин (CN-Cbl) и гидроксокобаламин (OH-Cbl) – эти формы витамина B12 доступны для медицинского использования. Аденозилкобаламин (Ado– Cbl), метилкобаламин Me-Cbl) и кобинамид (CN2-Cbn) такие формы витамина B12 обнаруживаются в биологических или пищевых образцах.

Впервые витамин был открыт в США и в Англии в 1948 году. Позже почти через 30 лет пробовали синтезировать предшественник витамина В12, но из- за сложности данного многостадийного процесса не начал производиться в крупных масштабах. Затем витамин пробовали получать непосредственно из печени, но выход витамина был очень не большой. В настоящее время получают витамин исключительно с помощью микробиологического синтеза.

Роль витамина В12 для организма заключается во множестве функций, включающих участие витамина в синтезе некоторых незаменимых аминокислот, нуклеиновых кислот, миелина (вещество, образующее нервную оболочку), холина, метионина, а также кобаламин стимулирует функцию костного мозга (который отвечает за гемопоэз), способствует образованию гема в эритроцитах. Витамин B12 может участвовать в поддержании сульфгидрильных (SH) групп в восстановленной форме, необходимой для многих SH-активируемых ферментных систем. Благодаря этим реакциям витамин B12 связан с жировым и углеводным обменом и синтезом белка. Дефицит витамина B12 приводит к некоторым видам анемии (например, мегабластной), поражениям пищеварительного тракта и неврологическим патологиям (которые начинаются с неспособности продуцировать миелин и сопровождаются постепенной дегенерацией аксона и нервной головки). Также д ефицит витамина B12 потенциально может привести к серьезным и необратимым повреждениям, особенно мозга и нервной системы. При даже небольшом дефиците В12 , могут наблюдаться такие симптомы, как усталость, вялость, депрессия, плохая память, одышка, головные боли и бледность кожи, в частности, особенно у пожилых людей (старше 60 лет). Дефицит витамина B12 также может вызывать симптомы мании и психоза.

Витамин в12 применяется в медицине и ветеринарии при гипо- и авитаминозах витамина. Существует огромное множество форм витамина в виде таблеток, капсул, пероральных жидкостей, спреев, порошков, в качестве БАДов, в составе мультивитаминных комплексов, в форме растворов для инфузий, даже в составе зубных паст и продуктах питания с целью обогащения пищи витамином. Назначают витамин в12 при различных анемиях, рассеянном склерозе, при недостаточности витаминов группы В, болезнях тройничного нерва и двигательного нейрона, параличе и парезе, при печеночной недостаточности, невралгии и многих других. Часто прием добавок с витамином В12 показан для приверженцев вегетерианского и веганского образа жизни с целью профилактики гиповитаминоза В12 или для устранения авитаминоза В12 и их последствий для организма ,по причине недостаточного потребления продуктов содержащих В12 или неупотребления их вовсе.

Читайте также:  Витамины для десен при пародонтозе уколы

Получение витамина в12 осуществляют путем микробиологического синтеза из таких организмов, как актиномиценты, водоросли одноклеточные, а также фото- и метано синтезирующие бактерии. Например, источником В12 служат пропионовокислые бактерии, которых культивируют на средах с глюкозой, неорганическими солями, хлоридом кобальта, казеиновым гидролизатом и витаминами. Затем в среду добавляют 5,6-диметилбензимидазол( предшественник витамина), наблюдается активный рост в течение 5-6 суток и синтез витамина с выходом около 5,6-8,7 мг/л. Для более успешного синтеза и высокого выхода витамина активно также используют кукурузный субстрат и мутант пропионовокислых бактерий, выход витамина может составлять в таком случае до 30 мг/л витамина В12.

Действие на организм:

При пероральном попадании в организм В12 связывается с белком слюны — R-протеином, который защищает его в желудке от действия соляной кислоты. При поступлении в желудок, витамин, освободившись от R-протеина, соединяется с гликопротеидом – внутренним фактором Касла (Кастла) (который в свою очередь, вырабатывается париетальными клетками фундальных желез, расположенных в области дна тела и интрамедиальной части желудка) – проводящего его через агрессивную среду желудочного сока, защищая его от пищеварительных ферментов, а также от микрофлоры кишечника. В соединении с гликопротеидом В12 становится способен проникнуть через эпителиальные клетки подвздошной кишки и далее с помощью транспортных белков крови (альфа- и бетаглобулинов) в виде гидроксикобаламина разносится по организму и главным образом попадает в печень.

Сам по себе кобаламин не активен, для включения себя в два основных процесса — окисления остатка жирных кислот и трансаминирования аминокислоты гомоцистеина с последующим образованием метионина — принимает две коферментные формы: дезоксиаденозин-кобаламин и метилкобаламин соответсвенно.

Дезоксиаденозин-кобаламин участвует в реакции изомеризации – переноса радикальной группы на место водорода, а водорода на свободную связь углерода. В реакциях окисления незаменимых аминокислот (валин, изолейцин, цистеин и т.д.), это приводит к образованию большого количества энергии в виде сукценил-SKoA, используемого в цикле трикарбоновых кислот.

Метилкобаламин помогает образованию метионина из гистидина. Метионин является предшественником таких незаменимых веществ, как – адреналин, креатин, карнитина и др. Кроме того, реакция образования метионина способствует удержанию фолиевой кислоты (Витамин В9) внутри клетки.

Гиповитаминозы проявляются чаще всего не в следствии неправильного питания, а из-за нарушения в одном из звеньев проникновения кобаламина в организм, будь то дефицит внутреннего фактора Касла, поражение эпителиальных клеток нисходящей части подвздошной кишки и прочие нарушения мешающие нормальному транспорту витамина. Как правило, дефицит можно восполнить добавлением в рацион витамина В12 или применением инъекционных форм цианокобаламина (Естественно, это не будет являться лечением основного заболевания в большинстве случаев).

Цианокобаламин вводят интраназально, перорально и парентерально, тогда как гидроксокобаламин вводят только парентерально. Хранится витамин в основном в печени, но в костном мозге также содержится значительное количество поглощенного витамина В12. Этот витамин проникает через плаценту и распространяется в грудное молоко. Энтерогепатическая рециркуляция сохраняет системные запасы. Период полувыведения составляет около 6 суток (а в печени в среднем 400 дней). Ликвидация происходит главным образом через желчь. Однако избыток цианокобаламина из организма экскретируется и в неизмененном виде с мочой.

Из культуральной жидкости выделяют витамин, с помощью экстракции применяя органические растворители, ионообменной хроматографией. Если необходим витамин В12 для животноводческих целей, то продуцентами могут служить метанобразующие бактерии, а для медицинского использования витамин В12 получают обычно из бактерий Propionibacterium shermanii.

LD50 при внутривенном введении — мышь — 2 г / кг

Источник

Adblock
detector