Меню

Реферат по витамину b12

Тема: Витамин в12 (цианкобаламин)

Студентка 2курса 18 группы

Содержание

История открытия, структура витамина…………………………………………………. стр.5

Химия и биохимия витамина В12………………………………………………………стр.6-15

Биологическая роль витамина В12…………………………………………………….стр.16-17

Проявление гиповитаминоза и гипервитаминоза ……………………………………стр.18-21

Приложение: Цианокобаламин. Витамин В12 (Cyanocobalaminum). Описание

Список используемой литературы………………………………………………………..стр.25

Введение

Впервые с витаминами столкнулся русский ученых Лунин. Он провел эксперимент с мышами, разделив их на 2 группы. Одну группу он кормил натуральным цельным молоком, а другую держал на искусственной диете, состоящей из белка-казеина, сахара, жира, минеральный солей и воды.

Через 3 мес. мыши второй группы погибли, а первой остались здоровыми. Этот опыт показал, что помимо питательных веществ для нормальной жизнедеятельности организма необходимо еще какие-то факторы.

Немного позднее голландский ученый Эйкман — врач, который работа на острое Ява обратил внимание на то среди населения те, кто питался полированный очищенным рисом болели заболеванием связанным с поражением нервной системы — полиневрит. Эти же случаи были отмечены в тюрьме, среди заключенных. Это заболевание было названо Бери-Бери. В 1911 году поляк Казимир Функ выделил из кожуры риса вещество которое предупреждало заболевание Бери-Бери. Это вещество содержало аминогруппу и он его назвал витамин (вита — жизнь, амин — амин, то есть жизненный амин). К настоящему времени известно более 30 витаминов. Некоторые из них не содержат аминогруппу, но по традиции они тоже называются витаминами.

Витамины — это низкомолекулярные биологические активные вещества, обеспечивающие нормальное течение биохимических и физиологических процессов в организме. Они является необходимой составной пищи и оказывают действие на обмен веществ в очень малых количествах. Суточная потребность в витаминах измеряется в миллиграммах, микро граммах. Некоторые витамины могут вообще не синтезироваться в организме или синтезироваться в недостаточных количествах и должны поступать извне (суточная потребность холина — 1 г/сут, суточная потребность в полиненасыщенных высших жирных кислотах 1 г/сут) Витамины содержатся в продуктах растительного и животного происхождения, поэтому важно знать содержание витаминов в продукте. Из пищевых продуктов витамины выделяют используя полярные и неполярные растворители. Для количественного определения используют флюорометрические, спектрометрические, титрометрические, фотоколориметрические методы. Для разделения витаминов используются хромотаграфические методы.

Все витамины разнообразные по химическому строению, и свойствам. И их разделяют на 2 группы по растворимости:

водо-растворимые витамины — С, группа В, и др.

жиро растворимые — А,Д,Е,К.

Витамины называют или латинскими буквами (А,В,С,D) или химическим названием или по авитаминозу который присущ данному витамину.

Провитамины — вещества, которые при определенных условиях переходят в витамины (каротин, например, переходит в витамин А, 7-дегидрохолестерин переходит в витамин Д3).

При недостатке витаминов развивается гиповитаминоз, а при отсутствии их развивается авитаминоз. При избытке витаминов развивается гипервитаминоз.

При дефиците витамином в пище

При нарушении процесса всасывания витамином в кровь, при заболевании кишечника

При нарушении механизмов, лежащих в основе действия витамином на клетку (при беременности)

При ряде профессиональных заболеваний — у водителей, рабочие горячих цехов, и т.д. когда требуется больше витаминов чем в обычных условиях.

Биологическая роль витаминов — влияние на функции ферментом. Большая часть витаминов в виде коферментов или кофакторов входит в состав ферментом.

Антивитамины — структурные аналогия витаминов, которые блокируют рецепторы витамином (парааминобензойная кислота, например, нужна для нормального роста микроорганизмов кишечника. Антивитамином для нее является парааминосалициловая кислота — ПАСК. ПАСК является конкурентом ингибитором и блокатором рецептором ПАБК. Это свойство используется в фармакологии для создания и поиска препаратов — сульфаниламидов которые подавляют рост чужеродной флоры, путем ингибирования парааминобензойных рецепторов).

Витамины — это биологически активные вещества, которые необходимы для обеспечения таких жизненно важных функций, как рост, репродукция, поддержание нормальной иммунологической реактивности организма, а также нормального клеточного обмена и трансформации энергии.

Витамины влияют на интенсивность обменных процессов и иммунитет, обеспечивают устойчивость организма к неблагоприятным факторам внешней среды, проявляя при этом высокую активность в очень малых дозах

Источник

Витамин B12 — реферат по медицине, физкультуре и здравоохранению

  • Тип: Реферат
  • Предмет: Медицина, физкультура, здравоохранение
  • Все рефераты по медицине, физкультуре и здравоохранению »
  • Язык: Русский
  • Автор: mari
  • Дата: 7 июн 2010
  • Формат: RTF
  • Размер: 39 Кб
  • Страниц: 9
  • Слов: 1535
  • Букв: 10335
  • Просмотров за сегодня: 1
  • За 2 недели: 8
  • За все время: 501

Тезисы:

  • Хопкинса и Эйкмана в 1929 году представили к Нобелевской премий, за открытие витаминов.
  • Другие витамины были открыты в 1910-е, 1920-е и 1930 годы.
  • Это включает в себя больше, чем витамины, хотя люди часто считают, что это одно и тоже.
  • Питательные микровещества, такие как витамины и минеральные вещества, сами не создают энергию.
  • Химическая структура витаминов была расшифрована в 1940 году.
  • Активной формой витамина B.
  • Также витамин B.
  • Рекомендуемая суточная потребность в витамине B.
  • Повышена потребность в витамине B.
  • Целесообразен прием витамина B.

Похожие работы:

80 Кб / 34 стр / 6776 слов / 46221 букв / 26 мар 2011

9 Кб / 3 стр / 837 слов / 5931 букв / 4 окт 2003

4 Кб / 1 стр / 165 слов / 1122 букв / 5 июн 2020

29 Кб / 9 стр / 1460 слов / 9754 букв / 9 июн 2010

21 Кб / 13 стр / 1855 слов / 12135 букв / 24 мая 2020

17 Кб / 10 стр / 1564 слов / 10731 букв / 31 июл 2017

19 Кб / 12 стр / 1145 слов / 8119 букв / 27 июн 2013

635 Кб / 19 стр / 2741 слов / 18561 букв / 28 авг 2014

109 Кб / 20 стр / 3097 слов / 21606 букв / 22 апр 2013

58 Кб / 6 стр / 1175 слов / 7973 букв / 1 апр 2019

Источник

Реферат: Витамин B12

Ещё в древности люди знали о влиянии разных видов еды на человеческий организм для предотвращения определённых заболеваний. К примеру: от куриной слепоты помогает печень, это знали ещё в древнем Египте. Труд «Важные принципы пищи и напитков» в далёком 1330 году издал (в Пекине) монгол Ху Сыхуэй. В своём труде он систематизировал знания о роли питания и важность разнообразия еды для здоровья.

Джеймс Линд (James Lind), шотландский врач, обнаружил свойство цитрусовых предотвращать цингу в 1747 году. Трактат «Лечение цинги» он издал в 1753 году, но его взгляды признание получили несколько позже. На практике роль цитрусовых и растительной пиши показал Джеймс Кук. Он на своих кораблях добавил в рацион кислую капусту. В итоге о цинги ни умер ни один матрос. Для того времени это был невероятным успехам. В британском флоте 1795 году цитрусовых вели добавкой к рациону моряков.

Николай Лунин (русский биолог из Тартуского университета) в 1880 году вел эксперименты над мышами. Одну группу он кормил по отдельности всеми известными элементами, из которых состоит коровье молоко: жиры, соли, сахар, белки, углеводы. Другую кормил молоком. Первая группа грызунов погибла, вторая группа нормально развивалась. Лунин в своей работе сделал вывод, что есть некие вещества в малых количествах, необходимые для жизни. Но выводи учёного не были приняты. Повторить результаты Лунина другие учёные не смогли.

Христиан Эйкман (голландский врач) в 1889 году обратил внимание, что, пытаясь варёным белым рисом, куры заболевают болезнью бери-бери. Но если к еде добавить рисовых отрубей – излечиваются.

Уильям Флетчер в 1905 году обозначил роль неочищенного риса во избежание бери-бери у людей.

Фредерик Хопкинс в 1906 году сделал вывод, что в пище кроме жиров, углеводов, белков и т. д. ещё имеется какие-то вещества, которые имеют огромное значение для человеческого организма. Хопкинс их назвал «accessory factors».

Казимир Функ (польский учёный) в 1911 году в Лондоне, выделил некий кристаллический препарат. Маленькое количество препарата излечивало бери-бери. Препарат назвали «Витамайн» (Vitamine). Vita (латынь) – жизнь и amine (английский) – амин соединение содержащее азот. Казимир Функ предположил, то что и иные заболевания (рахит, цинга, пеллагра) могут быть вызваны недостатком каких-то веществ.

После открытия витамина C, Джек Сесиль Драммонд предложил переименовать название «vitamine», убрав из слова букву «e». Поскольку витамин C не содержал аминовые компоненты. Витамайны стали витаминами.

Хопкинса и Эйкмана в 1929 году представили к Нобелевской премий, за открытие витаминов.

Другие витамины были открыты в 1910-е, 1920-е и 1930 годы.

Химическая структура витаминов была расшифрована в 1940 году

Нужно ли вам принимать добавки?

Учитывая то, что витамины присутствуют во всех продуктах органического происхождения, некоторые из которых содержат одного витамина больше, чем другого и в большем или меньшем количестве, вы могли бы сказать, что, если вы едите «правильные» продукты питания при хорошо сбалансированной диете, вы получаете все необходимые витамины. И, вероятно, были бы правы. Проблема в том, что лишь немногие из нас в состоянии обеспечить себе эту мифическую диету. Согласно доктору Даниэлю Т. Квигли, автору книги «Неправильное питание нации»: «Каждый, кто когда-либо в прошлом употреблял сахар, белую муку или консервированные продукты, страдает каким-либо заболеванием, вызванным недостатками витаминов, при этом степень заболевания зависит от процента в диете продуктов, имеющих недостаток питательных веществ». Большинство продуктов, которые мы едим, прошли обработку и утратили питательные вещества. Возьмите, к примеру, злаковые и хлеб. Практически все, что можно увидеть в супермаркетах, не содержит ничего в больших количествах, кроме углеводов. «Но они же обогащены» — скажите вы. Так сказано на этикетке: «Обогащены».

Обогащены? Стандартом обогащения для белой муки является замена двадцати двух природных питательных веществ, которые удалены, тремя витаминами группы В, витамином D, кальцием и солями железа. Для поддержания жизни это очень непрочный посох. Я думаю, что ответ на вопрос о добавках ясен. Это включает в себя больше, чем витамины, хотя люди часто считают, что это одно и тоже. Углеводы, белки, жиры, минеральные вещества, витамины и вода — вот шесть важных усвояемых компонентов пищи, необходимых для крепкого здоровья. Пищевые вещества необходимы для поддержания уровня энергии, работы органов, усвоения продуктов питания и роста клеток.

Что такое питательные вещества?

Это включает в себя больше, чем витамины, хотя люди часто считают, что это одно и тоже.Углеводы, белки, жиры, минеральные вещества, витамины и вода – вот шесть важных усвояемых компонентов пищи, необходимых для крепкого здоровья. Пищевые вещества необходимы для поддержания уровня энергии, работы органов, усвоения продуктов питания и роста клеток.

Разница между питательными микро- и макровеществами

Питательные микровещества, такие как витамины и минеральные вещества, сами не создают энергию. Питательные макровещества — белки, жиры и углеводы делают это, но только при наличии питательных микровеществ, чтобы высвободить их. В отношении питательных веществ меньше часто тоже самое, что и больше. Количество питательных микро— и макровеществ, необходимых вам для хорошего самочувствия, может иметь огромную разницу по количеству, но каждый элемент важен.

Как питательные вещества начинают работать

Организм расщепляет питательные элементы для того, чтобы использовать их. Питательные вещества действуют, главным образом, через пищеварение. Пищеварение — это продолжительный процесс химического расщепления продуктов, которые попадают в организм через рот. Под воздействием ферментов эти продукты расщепляются на меньшие и более простые химические фрагменты, которые затем могут всасываться через стенки пищеварительного тракта — мышечную трубку с открытыми концами, более десяти метров длинной, которая проходит через все тело, — и, в конце концов, попадают в кровоток.

Знание о работе вашей пищеварительной системы с самого начала, прояснит наиболее часто возникающие случаи непонимания того, когда, где и как действуют питательные вещества

Витамин B12 (цианокобаламин)

Соa-[a-(5,6-Диметилбензимидазолил)]-Соb-кобамидцианид, или a-(5,6 диметилбензимидазолил)-кобамидцианид

Источник

Витамин B12 и его клиническое применение

Участие витамина B12 в биохимических восстановительных процессах организма, его влияние на гемопоэз, обмен жиров и каротина. Конкурентный расход витамина и синдром слепой петли. Риск макроцитарной мегалобластической анемии при недостатке в пище B12.

Название: Витамин B12
Раздел: Рефераты по медицине
Тип: реферат Добавлен 10:21:31 04 июня 2010 Похожие работы
Просмотров: 2955 Комментариев: 16 Оценило: 6 человек Средний балл: 4.7 Оценка: 5 Скачать
Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 16.05.2014
Размер файла 23,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство сельского хозяйства РФ

ФГБОУ ВПО «Санкт-Петербургская государственная академия ветеринарной медицины»

студентка 2 курса 18 группы

    Введение
  • 1. Химия витамина B12
  • 2. Строение
  • 3. Механизм действия
  • 4. Обмен жиров и каротина
  • 5. Участие витамина B12 в биохимических восстановительных процессах
  • 6. Белковый обмен
  • 7. Другие возможные функции
  • Заключение
  • Список литературы

Введение

Витамин В12, пожалуй, самый сложный из всех витаминов, впервые заявил о себе научному миру, когда в 1926-м году американские врачи Джордж Мино и Уильям Мэрфи обнаружили, что включение в состав питания больших количеств полусырой печени оказывает лечебное воздействие при злокачественной анемии. Однако попытки выделения антианемического фактора к успеху не привели. Лишь в конце 40-ых годов Мэри Шорб обнаружила вид бактерий, рост которых зависел от этого фактора, благодаря чему у ученых появилась возможность оценивать содержание витамина в данном субстрате по скорости роста колонии. В 1948 г. Э. Лестер Смит (Англия), а также Эдвард Рикес и Карл Фолкерс (США) получили витамин В12 в кристаллическом виде.

Однако потребовалось еще десять лет для того, чтобы методом рентгеноструктурного анализа определить его структуру, которая оказалась чрезвычайно сложной. За расшифровку структуры витамина В12 (1955 г.) Дороти Ходжкин была присуждена нобелевская премия.

Цианкобаламин относится к классу корриноидов — производных коррина, структура которого родственна порфирину. Однако, наряду с близостью их структур, имеются два важных химических различия между этими макроциклами. В то время как порфирин содержит систему из 12 сопряженных двойных связей, коррин состоит из частично восстановленных пиррольных (пирролиновых) гетероциклов. Корриновое кольцо содержит 6 двойных связей, входящих в состав линейной сопряженной системы, включающей 12 из 15 атомов, составляющих внутренний контур макроцикла. Корриновое кольцо сужено по сравнению с порфириновым. Если в порфирине каждая пара пиррольных колец отделена метиновыми мостиками, то в коррине кольца А и D соединены непосредственно связью между б-положениями. Поэтому внутренний контур корринового макроцикла содержит на один атом углерода меньше, чем порфириновый.

1. Химия витамина B12

Витамин B12 довольно хорошо растворим в воде (около 1,2% при комнатной температуре), а также в низших спиртах, в низших алифатических кислотах и в фенолах, но нерастворим во многих других органических жидкостях. Он практически не растворяется в пиридине и других третичных аминах, но растворим в некоторых жидких или расплавленных амидах, например в ацетамиде и диметилформамиде. Витамин является левовращающим веществом, но интенсивная, окраска затрудняет измерение оптического вращения. Витамин B12 обладает диамагнитными свойствами, что указывает на трехвалентное состояние кобальта.

Обычно витамин выделяют из микробной массы или животных тканей, используя растворы, содержащие цианид-ионы, играющие роль шестого лиганда кобальта. Однако сам цианкобаламин метаболически не активен. В состав ферментов входит соединение, в котором цианогруппа замещена остатком 5-дезоксиаденозина или метильным радикалом.

2. Строение

Признанная формула витамина B12 — C63H88O14N14PCo. Молекулу можно подразделить на две основные части, известные как «планарная группа» и «нуклеотид»; вторая часть лежит в плоскости, почти перпендикулярной к плоскости первой части, которая обладает очень большим, хотя и неполным, сходством с порфиринами Центральный атом кобальта соединен с четырьмя восстановленными пиррольными кольцами, образующими макрокольцо. Три из четырех соединений между кольцами образованы мезоуглеродным атомом (углеродным мостиком), характерным для порфиринов. Однако в четвертом месте соединения существует прямая связь между двумя б-углеродными атомами колец D и А. Макрокольцо содержит 6 сопряженных двойных связей, образующих единую сопряженную систему.

У 13 из 19 углеродных атомов, составляющих макрокольцо, водород полностью замещен метильными группами или длинными боковыми цепями — либо ацетамидными, либо пропионамидными радикалами

В отличие от нуклеотидов нуклеиновых кислот так называемый нуклеотид витамина B12 не содержит пурина или пиримидина. Вместо них основанием служит 5,6-диметилбензиминазол. Сахар представлен рибозой, но с б-гликозндпой связью, опять-таки в отличие от в-связи в нуклеиновых кислотах. Рибоза фосфорилирована при 3-м атоме углерода. Фосфат образует эфирную группу с 1-амино-2-пропиловым спиртом, который, кроме того, соединен амидной связью с цепью пропионовой кислоты при кольце D. Наконец, атом кобальта несет CN-группу (в цианкобаламине) и соединен координационной связью с одним из атомов азота в бензиминазоле, образуя, таким образом, второй мостик между двумя частями молекулы. Полагали, что третий гидроксил фосфатной группы тоже этерифицирован, пока не стало ясно, что неустойчивость триэфиров фосфорной кислоты исключает такую структуру. Витамин B12 является по существу внутренней солью; отрицательный заряд на атоме фосфора нейтрализован положительным зарядом на координационном комплексе кобальта.

3. Механизм действия

Недостаток в пище витамина B12 приводит к макроцитарной мегалобластической анемии. Нарушается работа нервной системы, наблюдается резкое снижение кислотности желудочного сока. Впрочем, авитаминоз В12 может развиться даже при полноценном питании, т.к. для процесса всасывания витамина в тонкой кишке обязательно наличие в желудочном соке особого белка — гастромукопротеина (фактор Касла). В полном соответствии с буквальным переводом своего латинского названия, этот белок выделяется стенками желудка, теми же клетками, которые выделяют кислоту. Фактор Касла специфически связывает витамин В12. Точная роль этого фактора не выяснена. Полагают, что в составе комплекса с гастромукопротеином витамин всасывается в тонком кишечнике и поступает в кровь портальной системы в комплексе с транскобаламинами I и II, при этом фактор Касла гидролизуется.

Когда биохимики привыкли к мысли, что витамин В12 не просто специфический антипернициозный фактор, а один из витаминов группы В, они стали предполагать, что он подобно другим водорастворимым витаминам окажется кофактором по крайней мере в одной ферментной системе. Но вопреки ожиданию функции, приписываемые витамину B12 различными исследователями, оказались столь многочисленными и разнообразными, что трудно было представить себе, как все они могли быть связаны с такой ролью кофактора. Поэтому стали искать его основную функцию. Например, казалось вероятным, что он каким-то образом ответствен за поддержание сульфгидрильных соединений в восстановленном реактивном состоянии; он мог бы, скажем, «активировать» различные SH-ферменты, препятствуя их окислению в неактивные S-S-формы. Или если он связан с синтезом белка, он был бы необходим для синтеза белковой части (апофермента) ряда ферментов.

Позднейшие исследования, особенно с применением изотопов, поставили под сомнение некоторые из приписываемых витамину В12 функций и выдвинули на первый план другие. Однако ряд новейших результатов еще не подтвержден.

4. Обмен жиров и каротина

Благотворное действие витамина В12 на обмен жиров у животных аналогичным образом приписывали поддержанию кофермента А в активном восстановленном состоянии. У крысят, получающих рацион с недостатком витамина B12, организм не способен синтезировать жиры, а у взрослых крыс нарушается использование жиров пищи так что животные становятся тучными в результате избыточного накопления жира. Полагают, что этот эффект лишь частично объясняется, действием витамина B12 на синтез метионина, в результате которого, в свою очередь, увеличивается количество липотропных веществ — холина и бетаина. Установлено, что витамин B12 повышает всасывание каротина или превращение его в витамин А у крыс (на что указывает повышенное накопление последнего в печени); хотя и не влияет на накопление готового витамина А. Механизм этого действия еще неясен.

5. Участие витамина B12 в биохимических восстановительных процессах

витамин анемия гемопоэз биохимический

Утверждали, что витамин В12 помимо действия на сульфгидрильные соединения поддерживает в восстановленном состоянии другие важные вещества. Так, Уилл и сотр. установили, что в плазме больных пернициозной анемией содержание аскорбиновой кислоты понижено; кроме того, при инъекции таким больным аскорбиновой кислоты она быстро окисляется в дегидроаскорбиновую. После лечения витамином B12 эти явления исчезают, а инъекции аскорбиновой кислоты ведут к повышению ее концентрации в плазме. Чоу и сотр. нашли, что в печени крыс с недостаточностью витамина В12 общее содержание дифосфопиридиннуклеотида повышено, но количество его восстановленной формы (ДПН-Н) понижено. Ненормально высокое отношение ДПН/ДПН-Н снижалось вдвое после введения витамина B12.

Было высказано предположение, что витамин B12 способен играть роль восстановителя, когда его трехвалентный кобальт восстановлен до двухвалентного состояния. Однако нужны сильные восстановители, чтобы вызвать эту реакцию, которая в присутствии атмосферного кислорода идет в обратном направлении. Предположение о том, что соединение с белком могло бы сдвинуть окислительно-восстановительный потенциал в область физиологических величин, не вполне убедительно, так как способность связывать белок после восстановления, возможно, утрачивается.

6. Белковый обмен

Очевидно, что благодаря своему влиянию на синтез метионина витамин B12 оказывает какое-то действие на белковый обмен. Например, можно ожидать, что цианкобаламин будет улучшать использование белка из рационов, в которых этой аминокислоты недостаточно. Таким образом объясняли некоторые из отмеченных выше благотворных эффектов витамина. Значительную прибавку в весе тела, даже если она связана с увеличением количества не только жира (как часто бывает), но и белка, обычно можно объяснить просто повышенным потреблением пищи животными, получающими витамин B12. Не было обнаружено никакого влияния витамина B12 на баланс азота и эффективность использования белков у крыс. Различные исследования, однако, указывали на более прямую роль этого витамина в синтезе белка. Так, было установлено, что у крыс с гипертиреозом (гиперфункцией щитовидной железы) витамин B12 способствует удержанию азота. У кур при недостаточности витамина B12 концентрация аминокислот в крови повышена, а белков в плазме — понижена; у человека также показано обратное отношение между концентрациями аминокислот и витамина B12 в крови, что объясняется стимулирующим действием витамина на синтез белков. Сообщается об избыточном выведении с мочой аминокислот, особенно лизина (но также и таурина) при обострении пернициозной анемии и дегенерации спинного мозга. Нарушение нормального обмена тирозина и триптофана могло бы вести к избыточному выделению фенольных веществ, тоже отмеченному при пернициозной анемии, и, возможно, к образованию токсичных веществ, вызывающих гемолиз, которым иногда сопровождается это заболевание; все эти обменные нарушения быстро исчезают после введения витамина B12. Было отмечено, что при дегенерации спинного мозга, часто сопровождающей пернициозную анемию, поражаются некоторые крупные аксоны, нормальное состояние которых поддерживается быстрым обновлением белка. Поэтому исследователи предположили, что витамин B12, специфически излечивающий это состояние, косвенным образом контролирует синтез белка; полагая, что прямое действие витамина направлено на синтез нуклеиновых кислот, они связали свое предположение с гипотезой о том, что РНК служит «шаблоном» для синтеза белка; их данные было бы логичнее истолковать в пользу прямого действия витамина B12 на синтез белков.

Изучалось влияние витамина B12 на включение меченого серина или меченой глюкозы в белки печени и в некоторые отдельные аминокислоты у свиней и крыс. Во всех опытах полученные величины были заметно ниже у животных с авитаминозом. Исследователи приводят соображения в пользу того, что это не было следствием одного лишь пониженного потребления пищи. Данные наблюдения были дополнены исследованиями, проведенными in vitro на препаратах микросом из печени и селезенки нормальных крыс и крыс с авитаминозом. Как показано, между этими группами животных обнаружились большие различия во включении меченых аминокислот; кроме того, при добавлении витамина B12 к препаратам микросом, полученных от животных с авитаминозом, включение аминокислот заметно возрастало.

Ученые пошли дальше и показали, что в надосадочной жидкости после центрифугирования микросом печени находится содержащий витамин B12 «рН 5-фермент», катализирующий включение меченых аминокислот в белок. Интересно было бы выяснить, не обладает ли ферментативной активностью комплекс витамина B12 с пептидом, выделенный ранее из печени. Позднее было показано, что «рН 5-фермент» содержит большую часть витамина В12, первоначально находившегося в микросомах печени. Этот фермент подвергли дальнейшему фракционированию; он, по-видимому, катализировал как активацию аминокислот аденозинтрифосфатом, так и их последующее включение в белковую фракцию микросом. Кроме того, оба процесса подавлялись антагонистами витамина В12 содержащими остаток анилида вместо одной из амидных групп. Исследователи высказали гипотезу, что витамин В12-фермент действует как активатор-переносчик: он переносит аминокислоты (после активации их карбоксильных групп аденозинтрифосфатом) на «шаблон», возможно, путем транспептидирования, в котором участвуют 6 карбоксамидных групп молекулы витамина. Некоторые ученые приводят соображения, позволяющие предполагать, что некоторые из карбоксамидных групп являются биохимически активными частями молекулы. Другим исследователям пока не удалось подтвердить эти данные; они указывают также, что включение аминокислот в белок микросом не обязательно представляет собой нормальный синтез белка. Таким образом, эти результаты нельзя считать окончательным доказательством прямого действия цианкобаламина на белковый синтез. Однако это привлекательная гипотеза; контролем синтеза апоферментов можно было бы объяснить влияние витамина В12 на ряд, казалось бы, не связанных между собой ферментных систем. В пользу этого можно привести и другие данные; различные исследователи утверждали, что недостаточность витамина B12 у крыс ведет к уменьшению содержания в их печени некоторых ферментов, а именно трансметилазы, рибонуклеазы, цитохромоксидазы и различных дегидрогеназ. Другие авторы установили, что при отсутствии витамина B12 не происходит регенерации ткани печени после частичной гепатэктомии. Все эти данные говорят в пользу прямого или косвенного влияния витамина на синтез белка.

7. Другие возможные функции

Недостаток цианкобаламина в пище ведет к повышенному выделению тиоцианата; в связи с чем была выдвинута гипотеза, основанная на предполагаемой лабильности групп цианида и конкуренции за цианид между оксикобаламином и ферментом роданезой.

Тесная взаимосвязь между функциями фолиевой кислоты и цианкобаламина привела к предположению о том, что последний катализирует превращение фолиевой кислоты в «цитроворум-фактор» или какую-то другую активную форму; убедительных экспериментальных данных в пользу этого, по-видимому, нет.

Интересные взаимоотношения, видимо, существуют также между витамином B12 и пантотеновой кислотой. Некоторые исследователи утверждали, что в опытах с кормлением кур каждый из этих факторов снижал потребность в другом. Эванс и сотр. обнаружили уменьшение содержания пантотеновой кислоты в печени после введения витамина В12 курам с авитаминозом и предположили, что витамин мобилизует печеночные резервы пантотеновой кислоты. Другие исследователи подтвердили эту взаимосвязь и отметили повышенное содержание витамина B12 в организме крыс с недостаточностью пантотеновой кислоты. Гершоф и сотр. доказали наличие взаимосвязи между тироксином, магнием и витамином B12. Как магний, так и витамин B12 частично снимают ряд эффектов введения тироксина, потерю витамина B12 тканями, подавление роста, разобщение окисления и фосфорилирования, изменение белковых фракций сыворотки. Эти результаты еще ждут своего объяснения.

«Конца пути еще не видно, но есть основания надеяться, что скоро мы будем знать о механизме действия витамина B12 больше, чем мы знаем о действии некоторых других витаминов, открытых гораздо раньше»

Заключение

В качестве иллюстрации широты клинического применения витамина В12 можно привести выдержку из «Инструкции по применению витамина В12», утвержденной фармакологическим комитетом Ученого совета Минздрава СССР 29 июня 1955 года:

«Витамин В12 представляет собой кристаллическое вещество красного цвета, обладающее выраженным кроветворным действием в ничтожно малых дозах. Применение показано при следующих заболеваниях:

1) Болезнь Аддисон-Бирмера, включая случаи с нарушением функций нервной системы

2) Спру (тропическая и нетропическая формы)

3) Мегалобластическая анемия у детей

1) Лучевая болезнь

2) Гиперхромная макроцитарная анемия

3) Анемии канкрозные

4) Анемии после резекции желудка

5) Анемии различного происхождения в предоперационном периоде.

6) Анемии макроцитарные гастроэнтерогенные

7) Острые хронические гепатиты и циррозы печени

8) Токсические анемии»

Вопрос о том, действует ли витамин В12 непосредственно на костный мозг, или его роль состоит лишь в активации фолиевой кислоты путем перевода ее в фолиновую.

В опытах Астальди, Вальдини и Фругони (1948), Томпсона (1952), Нивега (1953) с культурами тканей показали, что печеночные экстракты, также как и фолевая кислота в чистом виде, будучи добавлены к культуре костного мозга больных пернициозной анемией в стадии обострения способствуют ускорению вызревания мегалобластов и появлению нормобластов, в то время как кристаллический витамин В12 оказался неэффективен.

Список литературы


1. Лестер Смит «Витамин В12», Москва, изд. Иностранной Литературы, 1962 г.


2. А.М. Юркевич, И.П. Рудакова «Структура, свойства и механизм действия кобаламиновых коферментов», серия «Итоги науки и техники: биоорганическая химия», т. 5, Москва, ВИНИТИ, 1985


3. В.М. Березовский «Химия витаминов», Москва, «Пищевая промышленность», 1973 г.


4. Т.Т. Березов, Б.Ф. Коровкин «Биологическая химия», Москва, «Медицина», 1992 г.


5. А.Л. Ленинджер «Основы биохимии», Москва, «Мир», 1985

Источник

Читайте также:  Витамин б12 передозировка симптомы
Adblock
detector