Меню

Реакции формулы витамин е

Витамин Е (токоферолы, витамин размножения)

Под общим названием витамина Е известен ряд веществ, обладающих витаминными свойствами и являющихся производными хромана. Самым активным из них является α-токоферол, выделяемцй из масла

пшеничных зародышей. Токоферолы в чистом виде представляют собой светло-жёлтое вязкое жидкое масло, не растворимы в воде, но растворимы в жирах и жирорастворителях. Они устойчивы к воздействию кислот, к нагреванию

(до 170°С), находясь в пищевых продуктах, стойки кулинарной обработке. Витамин Е необходим для процессов размножения. При отсутствии в пище крыс этого витамина у животных развивается

бесплодие. Наиболее богаты витамином Е масла из зародышей

пшеницы, семян яблок, шиповника, из облепихи, кукурузы, сои. Он содержится всеменах злаков, в мясе, жире, печени, в яичном желтке,

масле, молоке. Для усвоения организмом витамина Е необходимо наличие желчи в кишечном содержимом.

Витамин Е обладает противоокислительным действием: он тормозит окисление ненасыщенных жирных кислот и тем самым предохраняет от разрушения ненасыщенные липиды, входящие в состав таких важных клеточных структур, как митохондрии. Задерживая окисление ненасыщенных

жирных кислот, витамин Е уменьшает прогоркание жиров, а также окисление каротина и витамина А, находящихся вместе с ним в продуктах питания.

Витамин Е (антистерильный) по химической приро­де представляет собой

α-, β-, γ-, δ -токоферолы, суточная потребность которого в организме составляет 5 мг.

Источники: растительные масла (подсолнечное, ку­курузное и т. д.), семена злаков, капуста, мясо, сливочное масло, яичный желток.

Биологическая роль

Витамин Е влияет на репродуктивную функцию и обмен селена в организме, выполняет антиоксидантную роль, защищая мембраны от перекисного окисления липидов, предотвращая тем самым гемолиз эритроцитов.

Гипо- и авитаминоз Е: у детей — гемолитическая жел­туха, у взрослых — дегенеративные процессы в репро­дуктивных органах, выкидыши у беременных, жировая дегенерация печени и дистрофические изменения в ске­летных мышцах.

Реактивы: спиртовой раствор витамина Е (токоферол), азотная кислота, концентрированная; хлорное железо (III) — 1% раствор.

Опыт 3. Качественная реакция на витамин Е

Взаимодействие α-токоферола с концентрированной азотной кислотой приводит к окрашиванию реакционной смеси в красный цвет. Это обусловлено тем, что продукт окисления а-токоферол имеет хиноидную структуру. При взаимодействии с хлорным железом (III) а-токоферол окисляется до α-токоферилхинона — соединения, окра­шенного в красный цвет.

Ход работы

1. Реакция с азотной кислотой. В сухую пробирку вносят 5 капель спиртового раствора витамина Е и добав­ляют 1 мл концентрированной

азотной кислоты. Пробир­ку интенсивно встряхивают и наблюдают постепенное по­явление красного окрашивания.

2. Реакция с хлорным железом. В сухую пробирку вносят 0,5 мл спиртового раствора α-токоферола, затем 0,5 мл 1%-го раствора хлорного

железа (III) и тщательно перемешивают содержимое пробирки. Наблюдают появ­ление красного окрашивания.

Качественная реакция на витамин Е

С концентрированной азотной кислотой

Витамин Е окисляется при действии сильных окислителей (марганцовокислый калий, азотная кислота). Данная реакция обусловлена окислением токоферолов под влиянием

концентрированной азотной кислоты в соединения, имеющие хиноидную структуру и окрашенные в красный цвет.

Витамин К (антигеморрагический) по химической природе представляет производное нафтохинонов, суточ­ная потребность которого в организме составляет 1 мг.

Источники: капуста, ягоды рябины, арахисовое мас­ло, тыква, печень свиньи томаты.

Биологическая роль

Витамин К участвует в свертывании крови, являясь кофактором

γ – глутамилкарбоксилазы, которая катализи­рует превращение

глутаминовой кислоты в γ — карбоксиглутамат, необходимый для биосинтеза четырех факто­ров свертывания крови: ф — II — протромбина, ф — VII- проконвертина, ф — IХ- ф. Кристмаса и ф –Х — ф. Стюарта — Проуэра.

Гипо- и авитаминоз К приводит к снижению сверты­вании крови вследствие нарушения биосинтеза γ-карбоксиглутамата, а также к капиллярным и паренхиматоз­ным кровотечениям.

Широкое практическое применение нашел синтези­рованный в 1942 г. академиком А. В. Палладиным препа­рат «викасол» (бисульфитное соединение метилнафтохинона, растворимое в воде). Он является производным ви­тамина К3 (метилбензохинона):

О п ы т 4 . Качественная реакция на витамин К

В пробирку к 2 мл спиртового раствора витамина К прибавляют 2 мл 5%-го раствора диэтилдитиокарбамата и 0,5 мл 2%-го раствора гидроксида натрия в этаноле, Раствор приобретает голубое окрашивание.

Витамин F по химической природе представляет эссенциальные, полиненасыщенные ВЖК. Суточная потреб­ность витамина F в организме составляет 10—30 г.

Гипо- и авитаминоз F приводит к снижению биосин­теза эфиров холестерина, простагландинов, лейкотриенов, тромбоксанов. Следствием

этого является сухость кожи и слизистых, шелушение кожи, выпадение волос, ломкость ногтей.

Эссенциальные, полиненасыщенные ВЖК (витамин F):
С17Н31СООН Δ 9,12 — линолевая,

С17Н29СООН Δ 9,12,15 — α -линоленовая,

C17H29COOH Δ 6,9,12 γ -линоленовая,

С19Н31СООН Δ 5,8,11,14 — арахидоновая.

Витамин F участвует в регуляции обмена липидов. Особенно важно, что непредельные высшие жирные кис­лоты способствуют выведению из организма животных и человека холестерина, а это препятствует развитию ате­росклероза. Отмечено также положительное действие ви­тамина на состояние кожного и волосяного покровов. Ара­хидоновая кислота служит субстратом для биосинтеза про­стагландинов,

тромбоксанов, лейкотриенов в организме человека.

Контрольные вопросы

1. Каково химическое строение и биологическая роль витаминов A? D3? E? К? F? Их суточная потребность в организме человека.

Читайте также:  Хорошие витамины для детей 10 лет для ума

2. Принцип метода количественного определения ви­тамина А.

3. Принципы методов качественного обнаружения ви­таминов A, D, Е, К.

Источник

Витамин Е (токоферол, антистерильный)

Источники

Растительные масла (кроме оливкового), пророщенное зерно пшеницы, бобовые, яйца.

Cуточная потребность

Строение

Молекула токоферола состоит из хроманольного кольца с HO- и CH3-группами и изопреноидной боковой цепью. Различают несколько форм витамина E, характеризующихся разной биологической активностью (в зависимости от числа CH3-групп и наличия двойной связи в боковой цепи).

Строение α-токоферола

Строение токотриенола
(R1, R2, R3 — метильные группы, которые могут
присутствовать в разном сочетании)

Биохимические функции

Витамин, встраиваясь в фосфолипидный бислой мембран, выполняет антиоксидантную функцию , т.е. препятствует развитию свободнорадикальных реакций. При этом:

1. Лимитирует свободнорадикальные реакции в быстроделящихся клетках – слизистые оболочки, эпителий, клетки эмбриона. Этот эффект лежит в основе положительного действия витамина в репродуктивной функции у самцов (защита сперматогенного эпителия) и у самок (защита плода).

2. Защищает витамин А от окисления, что способствует проявлению ростстимулирующей активности витамина А.

3. Защищает ненасыщенные жирнокислотные остатки мембранных фосфолипидов от перекисного окисления и, следовательно, любые клетки от разрушения.

Гиповитаминоз E

Причина

Кроме пищевой недостаточности и нарушения всасывания жиров, причиной гиповитаминоза Е может быть недостаток аскорбиновой кислоты.

Клиническая картина

Укорочение времени жизни эритроцитов in vivo, пониженная устойчивость и их легкий гемолиз, развитие анемии, увеличение проницаемости мембран, мышечная дистрофия, слабость. Также со стороны нервной ткани отмечены арефлексия, снижение проприоцептивной и вибрационной чувствительности, парез взора вследствие поражения задних канатиков спинного мозга и миелиновой оболочки нервов.

В эксперименте у животных при авитаминозе развивается атрофия семенников и рассасывание плода (греч. tokos – потомство, phero – несу, т.е. антистерильный), размягчение мозга, некроз печени, жировая инфильтрация печени.

Источник

Витамин Е

Токоферол

Общие сведения

История открытия

В 1922 г. Эванс и Бишоп (H.M. Evans, K.S. Bishop) опубликовали первое сообщение о результатах изучения бесплодия у животных, выращенных на искусственной диете. Ученые высказали предположение, что причиной патологии является пищевая недостаточность. Многочисленными исследованиями было установлено, что наибольшей лечебной активностью обладает сливочное масло, видимо, за счет содержания в нем фактора, необходимого для плодовитости. Этот фактор был найден также в листьях салата, зернах пшеницы, овса и других злаков и получил название «витамин Е».

В 1936 г. Эванс и Эмерсоны (Evans H.M., Emerson O.H., Emerson G.A.) опубликовали сообщение о выделенном ими веществе, названном «α-токоферол» (альфа-токоферол). Оно обладало свойствами витамина Е. Название образовано от греческих слов «tacos» – «роды» и «phero» – «производить», а окончание «ol» возникло от химического обозначения для спирта, которым является витамин Е с точки зрения химического строения. Окончательно химическая структура витамина Е была расшифрована к 1939 г. Витамин Е – это группа соединений, имеющих сходные биологические свойства. Они относятся к токоферолам. Известны 8 токоферолов, их изомеры и синтетические производные (α-, β-, γ-, δ-токоферол и α-, β-, γ-, δ-токотриенол). Наиболее значительной активностью обладает α-токоферол.

Физико-химические свойства

При комнатной температуре токоферолы представляют собой светло-желтые прозрачные масла. Некоторые из них при низкой температуре кристаллизуются. Токоферолы нерастворимы в воде, хорошо растворимы в органических растворителях (хлороформ, эфир, гексан, петролейный эфир), несколько хуже – в ацетоне и спирте. Устойчивы к действию кислот и щелочей. Сохраняют стабильность при нагревании. Чувствительны к ультрафиолету, кислороду воздуха и другим окислителям. В вакууме и атмосфере инертного газа стабильны при нагревании до 100 °С.

Токоферолы легко образуют сложные эфиры с различными кислотами, которые полностью сохраняют биологическую активность и при этом отличаются значительно большей устойчивостью к окислению.

Токоферолы легко вступают во взаимодействие со свободными радикалами и активными формами кислорода, чем объясняется их антиоксидантное действие. Молекулярная масса α-токоферола 430,7, β-, γ-токоферола 416,7. Температура плавления α-токоферола 0 °С, β-токоферола 3 °С.

Фармакокинетика

В отличие от других жирорастворимых витаминов А, D, К, витамин Е не накапливается в жировой ткани организма. Примерно половина витамина Е, содержащегося в пище, всасывается из кишечника, так как абсорбция витамина Е требует присутствия жирных кислот. Эмульгирование желчью с образованием мицелл жира и растворенного в нем витамина Е происходит в двенадцатиперстной кишке. При всасывании происходит расщепление токоферола ацетата до свободного токоферола. Затем токоферол в составе лимфы попадает в лимфатическую систему и транспортируется вместе с хиломикронами. Для наиболее полного всасывания витамина Е в кишечнике необходимо присутствие желчи и секрета поджелудочной железы. При нарушении желчеоттока всасывание витамина Е замедляется.

У здоровых людей абсорбируется при приеме пищи 51–86 % α-токоферола, у больных с синдромом мальабсорбции – 31–83 %. При раке желудка – 21 %. Депонируется витамин Е в гипофизе, семенниках, надпочечниках. Выводится с желчью (до 90 %).

Источники

Таблица 1. Содержание витамина Е в растительных продуктах

Продукт

Содержание витамина Е, мг/100 г

Источник

Реакции формулы витамин е

Токоферола ацетат (Витамин Е)

CAS номер: 7695-91-2
Брутто формула: C31H52O3
Внешний вид: представляет собой прозрачное вязкое масло от бесцветного до желтоватого или желтовато-зеленоватого цвета. Почти без запаха.
Химическое название и синонимы: Tocopheryl acetate, 3,4-Dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-benzopyran-6-yl acetate; Vitamin E acetate
Физико-химические данные:
Молекулярная формула C31H52O3
Молекулярный вес 472.75 г/моль
Плотность 0,96
Температура плавления 2,5-3,5 ºC
Температура кипения 224 ° C при 0,4 гПа (0,3 мм рт.ст.)
1 мг dl-a-токоферола ацетата эквивалентно 1,0 МЕ витамина Е.
Практически не растворим в воде, легко растворяется в этаноле, хлороформе, ацетоне, эфире и растительных маслах.
Стабилен при нормальных температурах и давлениях. Темнеет при воздействии воздуха. Медленно окисляется атмосферным кислородом.
Условия, которых следует избегать: свет, воздействие воздуха, избыток тепла. Несовместимость с другими материалами: Сильные окислители.
Опасные продукты разложения: Окись углерода, двуокись углерода.
Опасная полимеризация не происходит.
При сохранении целостности упаковки может храниться в течение 36 месяцев при температуре 25 ºC

Читайте также:  Какие витамины пить чтоб не есть сладкое

Витамин Е-это совокупность восьми соединений- 4 токоферолов и 4 токотриенолов. Все они имеют 6-хромовую кольцевую структуру и боковую цепь. Токолы имеют фитольную боковую цепь, тогда как триенолы имеют сходную структуру с двойными связями в положениях 3 ‘, 7’ и 11 ‘боковой цепи. И токолы, и триенолы встречаются в виде различных изомеров, которые отличаются друг от друга количеством и расположением метильных групп в хромонном кольце. Биологически активным является альфа-токоферол (его чаще всего и называют собственно витамин Е). Витамин Е является жирорастворимым витамином, всасывается в верхних отделах тонкого кишечника. Накапливается в основном в печени. Выводится с желчью. Основными источниками витамина Е являются растительные масла, листовая зелень и яичный желток.

В организме человека витамин Е присутствует главным образом в виде альфатокоферола. Витамин Е может быть выделен из природных источников (растения, овощи и мясо) или может быть изготовлен в лаборатории синтетическим путем. Поэтому витамин Е продается как натуральный или как синтетический препарат. Природный альфа-токоферол в настоящее время упоминается как RRR-альфа-токоферол (ранее d-альфа-токоферол), тогда как синтетический альфа-токоферол упоминается как all-rac-альфа-токоферол (ранее dl-альфа-токоферол). Этерифицированные формы витамина Е, такие как ацетат альфа-токоферола, сукцинат альфа-токоферола и никотинат альфа-токоферола, изготавливаются в лаборатории и также продаются.

Согласно некоторым исследованиям выяснено, что витамин Е взаимодействует с некоторыми загрязняющими веществами, присутствующими в окружающей среде и рационе питания. Основными загрязнителями атмосферы являются озон и оксид азота, которые способны генерировать свободные радикалы в организме. Витамин Е защищает от вредного воздействия озона и оксида азота. Основными загрязнителями пищи являются нитриты, которые присутствуют в свежих фруктах и ​​овощах, а также в беконе, колбасе и вяленом мясе. Нитриты сами по себе не вредны для взрослых, но они могут сочетаться с аминами в желудке с образованием нитрозамина. А нитрозамины являются одними из самых сильных агентов, вызывающих рак как у животных, так и у людей. Присутствие витамина С или витамина Е в желудке может предотвратить образование или снизить уровень нитрозаминов. Принимать витамин С или Е перед употреблением в пищу свежих фруктов и овощей, содержащих большое количество нитритов, не нужно, поскольку они содержат другую группу химических веществ, называемых фенольными, которые, подобно витамину Е, действуют как антиоксидант и могут предотвращать образование нитрозаминов. Тем не менее, важно принимать витамин Е непосредственно перед употреблением бекона, колбасы или вяленого мяса, чтобы предотвратить образование нитрозаминов.

Витамин Е находит применение в качестве пищевой витаминной добавки в рацион человека, а также для обогащения кормов животных. Выпускается он в виде капсул и таблеток и входит в состав комплексных мультивитаминных препаратов.

Многие положительные эффекты витамина Е используются в животноводстве. Например, замечено, что у кур дефицит селена приводит к плохому усвоению витамина Е из пищеварительного тракта. Витамин Е усиливает профилактическое действие селена на рак молочной железы у крыс, вызванный химическими веществами. Как витамин Е, так и цинк действуют как стабилизатор клеточных мембран. Эритроциты от животных с дефицитом цинка или витамина Е легко разрушаются свободными радикалами. Дополнение рационов витамином Е или цинком делает эти мембраны более устойчивыми к воздействию свободных радикалов. Диеты с дефицитом цинка вызывают повреждение кожи и суставов у курицы. Пищевые добавки с высокими дозами витамина Е предотвращают вышеуказанные вредные последствия дефицита цинка. Эти исследования показывают, что некоторые эффекты витамина Е и цинка на клетки похожи. Сообщалось, что у животных потребность в витамине Е в рационе увеличивается, когда потребление полиненасыщенных жирных кислот увеличивается. Ученые в области питания установили, что клеточные мембраны, содержащие полиненасыщенные жиры, легче повреждаются свободными радикалами, чем те, которые содержат насыщенные жиры. Чтобы защитить мембраны, которые содержат высокий уровень полиненасыщенных жиров, увеличение потребления витамина Е не только оправдано, но и необходимо.

Воздействие витамина Е на железо и медь усиливает разрушение витамина Е. Сообщалось, что у младенцев с низкой массой тела прием железа может вызывать развитие анемии с дефицитом витамина Е, особенно у тех детей, которых кормили молочной смесью, содержащей больше уровень полиненасыщенных жирных кислот.

Читайте также:  Когда лучше ставить уколы с витаминами

Витамин С защищает витамин Е от вредного воздействия железа и меди, а также помогает регенерировать витамин Е сразу после его разрушения свободными радикалами. Во время дефицита витамина Е уровни витамина А (ретинола и ретиниловых эфиров) в печени и ретинола в плазме снижаются. Эти уровни увеличиваются во время добавления альфа-токоферола. Потребление более высокого уровня витамина А в пище увеличивает потребность в витамине Е в организме. Большинство исследований на людях показывают, что потребление витамина Е имеет важное значение для эффективного использования витамина А и хранения печени. Дефицит витамина Е может также вызвать дефицит витамина B-12. Таким образом, изменения уровня витамина Е могут влиять на уровень других витаминов, таких как витамины А, С и В-12.

Фотосинтезирующие растения, водоросли и цианобактерии синтезируют витамин Е. Для коммерческого использования витамин Е можно экстрагировать из растений, как правило, в качестве побочного продукта получения растительных масел или полностью синтетическим способом.

Естественно полученный d-альфа-токоферол может быть экстрагирован и очищен от масел семян, или гамма-токоферол может быть экстрагирован, очищен и метилирован для создания d-альфа-токоферола. В отличие от альфа-токоферола, экстрагированного из растений, который также называют d-альфа-токоферолом, промышленный синтез создает dl-альфа-токоферол. Он синтезируется из смеси толуола и 2,3,5-триметилгидрохинона, которая реагирует с изофитолом на весь альфа-токоферол, используя железо в присутствии газообразного хлористого водорода в качестве катализатора. Полученную реакционную смесь фильтруют и экстрагируют водной каустической содой. Толуол удаляют выпариванием, и остаток очищают путем вакуумной перегонки. Производители пищевых добавок и обогащенных продуктов для людей или домашних животных превращают фенольную форму витамина в сложный эфир, используя либо уксусную кислоту, либо янтарную кислоту, потому что сложные эфиры являются, более химически стабильными, обеспечивая более длительный срок хранения. Эфирные формы деэтерифицируются в кишечнике и поглощаются как свободный альфа-токоферол.

Действие на организм:

Витамин Е является отличной ловушкой для пероксильных радикалов (ROO •) и является основным жирорастворимым антиоксидантом, присутствующим в клетках млекопитающих. Поэтому он занимает уникальное положение в арсенале природных антиоксидантов, обеспечивающих защиту от различных заболеваний. Исследования процесса реакции α-токоферола с пероксильными радикалами позволяют предположить, что существование механизма регенерации α-токоферола имеет важное значение для поддержания антиоксидантной жизнеспособности витамина. Антиоксидант, вообще — это молекула, которая ингибирует окисление других молекул. Окисление представляет собой химическую реакцию, которая может приводить к образованию свободных радикалов, вследствие чего возникают цепные реакции, повреждающие клетки. Антиоксиданты, такие как витамин Е, прекращают эти цепные реакции. Термин «антиоксидант» в основном используется для двух разных групп веществ: промышленных химикатов, которые добавляются к продуктам для предотвращения окисления, и натуральных химических веществ, находящихся в пищевых продуктах и тканях тела, которые, оказывают антиоксидантное действие на организм. Альфа-токоферол выполняет также структурную функцию, стабилизируя биомембраны клеток. При недостатке в организме витамина Е может развиться гемолитическая анемия. Часто витамин назначают во время беременности для предотвращения выкидыша и для полноценного развития плода.

Недавние исследования показывают, что лечение альфа-токоферилсукцинатом вызывает дифференцировку клеток при некоторых раковых заболеваниях (клетки меланомы in vitro); тем не менее, он ингибирует рост других опухолевых клеток (нейробластомы мыши, глиомы крысы и простаты человека) in vitro. С другой стороны, альфа-токоферол, альфа-токоферилацетат и альфа-токоферилникотинат в сходных концентрациях были неэффективными. Однако бутилированный гидроксианизол (BHA) и бутилированный гидрокситолуол (BHT), которые имеют антиоксидантные свойства, подобные свойствам витамина Е, были только частично эффективными в достижении вышеуказанных изменений. Таким образом, влияние сукцината витамина Е на раковые клетки, отчасти, обусловлено его антиоксидантным механизмом. Альфа-токоферол также вызывает дифференцировку миелоидного лейкоза у мышей in vitro. Недавние исследования in vitro продемонстрировали новый механизм действия витамина Е, в котором не участвует его антиоксидантная роль. Лечение сукцинатом витамина Е раковых клеток (нейробластома) и нормальных фибробластов (L-клетки мыши) ингибирует стимулированную простагландинами (PG) E1 и PGA2-аденилатциклазу (превращает АТФ в аденозин-3 ‘, 5’-циклический монофосфат). Этот эффект в первую очередь обусловлен ингибированием каталитической активности белка аденилатциклазы. Из-за участия простагландинов в канцерогенных событиях было высказано предположение, что один из механизмов профилактики рака витамином Е может включать снижение реакции аденилатциклазы на простагландины. Поскольку выработка избытка простагландинов связана с подавлением иммунной системы и агрегацией тромбоцитов, вышеуказанный механизм витамина Е может быть вовлечен в индуцированный витамином Е стимуляционный иммунитет и ингибирование агрегации тромбоцитов. В недавнем исследовании было отмечено, что лечение витамином Е клеток нейробластомы увеличивает экспрессию гена c-mye (нормального клеточного гена) примерно в пять раз (Sharna & Prasad, неопубликованное наблюдение). Это первая демонстрация того, что витамин Е может усиливать транскрипцию определенной последовательности ДНК. Значение этого наблюдения в контроле роста, дифференцировки и злокачественности неизвестно в настоящее время.

Относительная эффективность природных и синтетических форм витамина Е изучена недостаточно. В экспериментальных системах in vitro природные и синтетические формы витамина Е были одинаково эффективны в отношении ингибирования роста клеток нейробластомы и меланомы. Однако d-форма витамина Е была более мощной, чем dl-форма, в подавлении роста клеток глиомы.

Источник

Adblock
detector