X Международная студенческая научная конференция Студенческий научный форум — 2018
ПОЛУЧЕНИЕ ВИТАМИННЫХ ПРЕПАРАТОВ
До 30-х годов прошлого столетия рибофлавин (витамин В2) выделяли из природного сырья. В наибольшей концентрации он присутствует в моркови и печени трески. Из 1 т моркови можно изолировать лишь 1 г рибофлавина, а из 1 т печени — 6 г. В 1935 г. обнаружен активный продуцент рибофлавина — гриб эремотециум эшби, способный при выращивании на 1 т питательной смеси синтезировать 25 кг витамина В2. Сверхсинтеза рибофлавина добиваются действием на дикие штаммы мутагенов, нарушающих механизм ретроингибирования синтеза витамина В2, флавиновыми нуклеотидами, а также изменением состава культуральной среды. Отбор мутантов ведут по устойчивости к аналогу витамина В2 — розеофлавину. [1]
Витамин В12 открыт в 1948 г. одновременно в США и Англии. В 1972 г. в Гарвардском университете был осуществлен химический синтез корриноидного предшественника витамина В12. Химический синтез корнестерона — структурного элемента корринового кольца витамина, включающий 37 стадий, в крупных масштабах не воспроизведен из-за сложности процесса.
Первоначально витамин В12 получали исключительно из природного сырья, но из 1 т печени можно было выделить всего лишь 15 мг витамина. Единственный способ его получения в настоящее время — микробиологический синтез. Продуцентами витамина В12 при его промышленном получении служат актиномицеты, метанообразующие и фотосинтезирующие бактерии, одноклеточные водоросли. Для получения высокоочищенных препаратов витамина В12 пропионовокислые бактерии культивируют периодическим способом на средах, содержащих глюкозу, казеиновый гидролизат, витамины, неорганические соли, хлорид кобальта. [4]
Из культуральной жидкости витамин В12 выделяют экстракцией органическими растворителями, ионообменной хроматографией с последующим осаждением из фракций в виде труднорастворимых соединений. В процессе получения витамина В12 с помощью пропионовокислых бактерий применяют дорогостоящую антикоррозийную аппаратуру, сложные и дорогие питательные среды. В последние годы исследуется возможность получения витамина с использованием иммобилизованных клеток пропионовокислых бактерий.[4]
Важное место в обмене веществ у животных занимает р-каротин, который в печени превращается в витамин А (ретинол). В организме человека и животных каротины не образуются. Основные источники р-каротина для животных — растительные корма; человек получает р-каротин также из продуктов животного происхождения. Р-Каротин можно выделить из ряда растительных объектов — моркови, тыквы, облепихи, люцерны. Установлено, что многие микроорганизмы — фототрофные бактерии, актиномицеты, плесневые грибы, дрожжи — синтезируют каротин. [6]
Микробиологическим способом получают и витамин D2 (эрго-кальциферол), при производстве которого освоено дешевое сырье (углеводороды) и установлен стимулирующий эффект ультрафиолетовых лучей на синтез эргостерина культурой дрожжей.
В основном в условиях промышленного производства пантотеновую кислоту получают методом химического синтеза. Наиболее важной коферментной формой витамина В5 является кофермент ацетилирования (КоА). Способностью продуцировать в значительных количествах КоА обладают многие микроорганизмы, в частности актиномицеты. Активно внедряются в промышленное производство способы получения пантотеновой кислоты и ее структурных компонентов из р-аланина и пантотеата калия с помощью иммобилизованных клеток бактерий, а также достигнуты существенные успехи при получении КоА с использованием мутантных штаммов Brevibacterium ammoniagenes, которые позволяют получать КоА в количестве до 3 г на литр. [8]
Одним из наиболее распространенных биотехнологических способов получения коферментной формы никотиновой кислоты — никотинамидадениндинуклеотида (НАД) является выделение (экстракция) его из микроорганизмов, как правило, из пекарских дрожжей. Для повышения содержания НАД в дрожжевых клетках культивирование проводят на средах с предшественниками синтеза никотиновой кислоты. Так, при добавлении в среды культивирования аденина или самой никотиновой кислоты получают до 12 мг НАД на 1 г клеток (по сухой массе).
Аскорбиновая кислота в мировом промышленном производстве витаминной продукции в целом занимает наибольшую долю — около 40 тыс. т в год. Ее синтез был разработан швейцарскими учеными А. Грюсснером и С. Рейхштейном в 1934 г. и используется до настоящего времени. Синтез аскорбиновой кислоты является многостадийным химическим процессом, в котором только одна стадия представлена биотрансформацией. Эта стадия трансформации d-сорбита в L-сорбозу при участии ацетатных бактерий. Для получения сорбозы используют глубинную ферментацию, когда культуру продуцента Gluconobacter oxydans выращивают в ферментерах периодического режима с мешалкой и барботером для усиления аэрации и массообмена в течение 20 — 40 ч с результатом по выходу сорбозы до 98% исходного количества сорбита в среде. Обычно для достижения такого высокого выхода целевого продукта в питательную среду вносят кукурузный или дрожжевой экстракт в количестве около 20%. По окончании ферментации сорбозу выделяют из культуральной жидкости. Помимо оптимизации среды можно совершенствовать и технологическую аппаратуру. Например, переход от периодического культивирования продуцента Gluconobacter oxydans к непрерывному, в аппарате колоночного типа увеличивает скорость образования сорбозы в 1,7 раз. [3]
Впервые кальциферол был выделен из рыбьего жира в 1936 г. А. Виндаусом и применен при лечении рахита. Он получил название витамина D3, так как ранее из растительных масел был выделен эргостерин под названием витамин D, при облучении которого получили витамин D2 — эргокальциферол (кальциферол — в переводе «несущий кальций»).
В настоящее время кальциферол производят из эргостерина с применением УФ-облучения биотехнологическим методом. В процессе преобразования эргостерина в эргокальциферол принимают участие микроорганизмы. Особенно богаты эргостерином клетки дрожжей всех видов и плесневые грибы. В сухой биомассе дрожжей содержится 5—10% эргостерина.
При дальнейшем УФ-облучении эргостерина получают витамин D2, который либо используется как пищевая добавка, либо подвергается дальнейшей обработке с целью получения кристаллического витамина D2. [5]
Витамин А — циклический, непредельный одноатомный спирт, образуемый в слизистой кишечника и печени из провитаминов под воздействием фермента каротиноксидазы. Каротиноиды — широко распространенная группа природных пигментов, образуемых высшими растениями, водорослями и некоторыми микроорганизмами. У животных эти пигменты не образуются, а поступают с продуктами питания и служат источником витамина А. [10]
Убихиноны в последнее время вызывают интерес как перспективные лечебные препараты. С одной стороны, они синтезируются в организме животных и человека, делая необязательным их поступление с пищевыми продуктами, что отличает их от группы витаминов.
В производстве убихинонов применяются биотехнологические методы, в основе которых лежит экстракция из биологического материала. В промышленном производстве убихинонов, в качестве субстрата используются как растительные ткани, так и микроорганизмы с высоким содержанием убихинонов, например дрожжи и грибы.
В настоящее время используется биотехнология получения уби-хинона-9 и эргостерина из микробных липидов, являющихся побочным продуктом крупного производства белково-витаминного концентрата при выращивании грибов Candida maltosa. [11]
Витамины необходимы для образования иммунных клеток и антител. Суточная потребность в витаминах может быть небольшой, но именно от обеспеченности витаминами зависит нормальная работа иммунной системы и энергетический обмен. Вот почему витаминный дефицит ускоряет старение организма и увеличивает частоту возникновения инфекционных заболеваний и злокачественных опухолей, что значительно сокращает продолжительность и качество жизни.
Специалисты рекомендуют принимать препараты, которые содержат в своем составе весь спектр жизненно важных витаминов, причем, что не менее важно, комплекс должен быть качественным и хорошо сбалансирован по дозировкам. Это будет гарантией эффективности и безопасности препарата. Высокое качество и оптимальные дозировки витаминов позволяют значительно снизить риск аллергических реакций, которые, к сожалению, нередко встречаются в последнее время.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
1. Карелин А.О. , Ерунова Н.В. «Витамины». — М.: серия советы доктора, 2002. — 160 с.2. Вент Ф. «В мире растений», -М.,1993 г. — 232 с3. Блинкин С.А. « Имунитет и здоровье», -М.: Знание. 1977г. — 316 с4. Вершигора А.Е. «Витамины круглый год»,-М 2007 г. — 159 с
6. Яннус А. Э. и Коллас С. Ю. Микробиология, эпидемиология и иммунобиология, 2010 г. — 426 с
7. Фердман Д. Л. В кн.: Витамины. Изд. АН УССР. Киев, 1986 г. — 285 с
8. Смирнова Л. А. Витаминные ресурсы. Витамин В12, его биосинтез, функции и применение. Изд. АН СССР. 1961 г. — 150 с
9. Минкина А. И. Биохимия, 2003 г. — 215 с
10. Игнатова Л. Н. Клиническая медицина, 2006 г. — 652 с
11. Березовский В. М. Химия витаминов. М., 1999 г. — 326 с
Источник
Производство витаминов и ферментов
Понятие и основные этапы производства витаминов B2, B12, D, эргостерина, определение необходимых для этого ингредиентов. Техническое получение аскорбиновой кислоты. Микробиологическое производство ферментов. Особенности иммобилизованных ферментов.
Рубрика | Медицина |
Вид | лекция |
Язык | русский |
Дата добавления | 04.12.2012 |
Размер файла | 596,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Производство витаминов и ферментов
фермент витамин эргостерин иммобилизованный
Биотехнологическое производство может быть направлено либо на получение максимально возможного количества биомассы (например, производство хлебопекарных дрожжей), либо на достижение максимума выхода продуктов жизнедеятельности клеток.
Витамины — группа низкомолекулярных органических веществ, которые в очень низких концентрациях оказывают сильное и разнообразное биологическое действие. В природе источником витаминов являются главным образом растения и микроорганизмы. Менахиноны и кобаламины синтезируются исключительно микроорганизмами. И хотя химический синтез в производстве большей части витаминов занимает ведущее положение, микробиологические методы также имеют большое практическое значение.
Витамин В2. В основе строения флавинов, к которым относится рибофлавин лежит гетероциклическая изоаллоксазиновая система, представленная тремя конденсированными циклами: ароматическим (А), пиразиновым (В) и пиримидиновым (С). К азоту пиразинового кольца присоединен спирт рибит:
Рибофлавин функционирует в коэнзимных формах, представляющих собой его фосфорные эфиры: флавиномононуклеотид (ФМН) и флавинадениндинуклеотид (ФАД). В последние десятилетия открыты новые биокаталитические факторы изоаллоксазиновой структуры, функциональные группы которых представлены модифицированными молекулами РФ, ФМН, ФАД.
Кормовой концентрат РФ получают с помощью гриба Eremothecium ashbyii. Недостаток культуры Е. Ashbyii — ее нестабильность.
При хранении на твердых средах при комнатной, низкой температуре и даже в процессе лиофилизации гриб легко теряет способность к сверх синтезу РФ. Для сохранения штамма Е. ashbyii в активном состоянии в течение длительного времени (8-10 месяцев) рекомендуется производить систематический рассев на твердые питательные среды и отбирать наиболее интенсивно окрашенные в оранжевый цвет колонии. Яркая окраска колоний коррелирует с высокой рибофлавин-синтетической способностью. Среда для пробирок содержит соевую муку, свекловичный сахар, агар, рН 6,8 (1-й вариант) или дрожжевой экстракт, пептон, глюкозу, агар, рН 6,8 (2-й вариант). Время выращивания 5-7 сут. Среда для колб и бутылей содержит: соевую муку, свекловичный сахар (1-й вариант) или пептон, свекловичный сахар, кукурузный экстракт, KH2P04, MgS04, подсолнечное масло (2-й вариант). Время выращивания 48 ч. Среда в инокуляторе содержит кукурузный экстракт, свекловичный сахар, КН2Р04, технический жир.
Технологическая схема получения кормового препарата рибофлавина представлена на рисунке. В инокуляторе 8 культуру выращивают в течение 21-26 ч, затем переводят ее в ферментер 7 с питательной средой, содержащей: кукурузную муку, соевую муку, кукурузный экстракт, свекловичный сахар, КН2РО4, СаСО3, NaСI и технический жир. Среду стерилизуют в смесителе 6 при 120-122°С в течение часа. Культивирование в ферментере ведут до начала лизиса клеток и появления спор (определяют микроскопически). Температура культивирования 28-30°С, давление воздуха в ферментере (1-2)*10 4 Па, расход воздуха 1,5-2,0 л в минуту на 1 л культуральной жидкости. Выход РФ около 1200 мкг/мл. Для получения кормового препарата РФ культуральную жидкостькость упаривают под вакуумом 10 до содержания 30-40%. Сироп высушивают в распылительной сушилке 11, сухую пленку дробят в дробилке 12 до состояния порошка, который расфасовывают.
Витамин В12. Среди неполимерных соединений витамин B12 имеет самое сложное строение. Это б (5,6 — диметилбензимидазол) — кобамидцианид:
В молекуле витамина B12 различают:
1. Порфириноподобное, хромофорное, или корриновое, кольцо, связанное с атомом кобальта четырьмя координационными связями через атомы азота.
2. Верхним координационным лигандом кобальта в витамине B12 является цианогруппа. Ее место могут занимать другие неорганические или органические заместители, например NO2 2- , SO2 2- , ОН — , H2O, CH3, аденозил; заместители определяют название производных витамина B12.
3. Шестая позиция кобальта занята нуклеотидным ядром (нижним лигандом кобальта), состоящим из азотистого основания, рибозы и остатка фосфорной кислоты. Нуклеотидное ядро связано с кобальтом через азот основания, а с корриновым кольцом через аминопропаноловый мостик.
В качестве продуцента витамина В12 используют Propionibacterium
freudenreichii var. Shermanii Для получения витамина B12 бактерии культивируют периодическим методом в анаэробных условиях в среде, содержащей кукурузный экстракт, глюкозу, соли кобальта и сульфат аммония. Образующиеся в процессе брожения кислоты нейтрализуют раствором щелочи, которая непрерывно поступает в ферментер. Через 72 ч в среду вносят предшественник — 5,6 — ДМБ. Без искусственного введения 5,6 — ДМБ бактерии синтезируют фактор В и псевдовитамин B12 (азотистым основанием служит аденин), не имеющие клинического значения. Ферментацию заканчивают через 72 ч. Витамин B12 сохраняется в клетках бактерий. Поэтому после окончания брожения биомассу сепарируют и экстрагируют из нее витамин водой, подкисленной до рН 4,5-5,0 при 85-90 С в течение 60 мин с добавлением в качестве стабилизатора 0,25%-ной NaNO2. При получении Ko-B12 стабилизатор не добавляют. Водный раствор витамина B12 охлаждают, доводят рН до 6,8-7,0 50%-ным раствором NaOH. К раствору добавляют Аl2(SO4)3*18H2O и безводный FеСl3 для коагуляции белков и фильтруют через фильтр-пресс. Очистку раствора проводят на ионообменной смоле СГ-1, с которой кобаламины элюируют раствором аммиака. Далее проводят дополнительную очистку водного раствора витамина органическими растворителями, упаривание и очистку на колонке с Al2O3. С окиси алюминия кобаламины элюируют водным ацетоном. При этом Ko-B12 может быть отделен от CN- и оксикобала мина. К водно-ацетоновому раствору витамина добавляют ацетон и выдерживают при 3-4°С 24-48 ч. Выпадающие кристаллы витамина отфильтровывают, промывают сухим ацетоном и серным эфиром и сушат в вакуум-эксикаторе над P2O5. Для предотвращения разложения Ko-B12 все операции необходимо проводить в сильно затемненных помещениях или при красном свете. Таким образом, можно получить не только смесь CN- и оксикобаламинов, но и коферментную форму, которая обладает высоким терапевтическим эффектом. Для химической очистки витамина B12 используется его способность образовывать продукты с фенолом и резорцином. При этом способе отделение витамина B12 от сопутствующих ему факторов упрощается. Промышленный концентрат цианкобаламина обрабатывают водным раствором резорцина (или фенола), выделяют комплекс витамина B12 с резорцином (или фенолом), далее разлагают его и получают кристаллический препарат.
Витамин D. Эргостерин — исходный продукт производства жирорастворимого витамина D2 и кормовых препаратов, обогащенных витамином D2. В группу витаминов Dобъединяют родственные соединения, важнейшими из которых являются витамины D2 и D3, обладающие антирахитичным действием. Витамин D2 (эргокальциферол) образуется при облучении ультрафиолетовым излучением эргостерина, витамин D3 (холекальциферол) образуется из 7-дегидрохолестерина. В организме человека и животных эти соединения регулируют усвоение кальция и фосфора из пищи и отложение их в костной ткани. В основе структуры эргостерина и витамина D лежит четыре углеродных цикла (А, В, С, D). В случае витамина D кольцо В разомкнуто.
В промышленности эргостерин получают, используя дрожжи Sacch. cerevisiae, Sacch. carlsbergensis, а также мицелиальные грибы. Засев производят большим количеством инокулята. Культивирование ведут при высокой температуре и сильной аэрации в среде, содержащей большой избыток источников углерода по отношению к источникам азота.
На выход витамина D2 (и образование других соединений) оказывают влияние длительность облучения, температура, наличие примесей. Поэтому облучение эргостерина, используемого в качестве пищевых добавок, производят с большой осторожностью.
Для получения кристаллического витамина D2дрожжи или мицелий грибов подвергают гидролизу раствором соляной кислоты при 110°С. Гидролизованную массу обрабатывают спиртом при 75-78°С и после охлаждения до 10-15°С фильтруют. Фильтрат упаривают до содержания в нем 50% сухих веществ и используют как концентрат витаминов группы В. Витамин D2получают из массы, оставшейся после фильтрации. Массу промывают, сушат, размельчают и дважды обрабатывают при 78°С трехкратным объемом спирта. Спиртовые экстракты сгущают до 70%-ого содержания сухих веществ. Таким образом, получают липидный концентрат. Его омыляют раствором NaOH, а стерины остаются в неомыленной фракции. Кристаллы эргостерина выпадают из раствора при 0°С. Очистку кристаллов проводят путем перекристаллизации, последовательным промыванием 69%-ым спиртом, смесью спирта и бензола (80:20) и повторной перекристаллизацией. Полученные кристаллы эргостерина сушат, растворяют в эфире, облучают, после чего эфир отгоняют, а раствор витамина концентрируют и кристаллизуют. Для получения масляного концентрата раствор витамина после фильтрации разбавляют маслом до стандартного уровня. Обогащенные эргостерином, облученные ультрафиолетовым излучением дрожжи используют в животноводстве как кормовую добавку. Эргостерин — исходный продукт для получения некоторых стероидных гормонов, лечебных и пищевых препаратов. Количество производимого пока эргостерина недостаточно для нужд народного хозяйства и внедрение новых производственных мощностей — задача ближайшего будущего.
Аскорбиновая кислота. Аскорбиновая кислота — органическое соединение, родственное глюкозе, является одним из основных веществ в человеческом рационе, которое необходимо для нормального функционирования соединительной и костной ткани.
Формула аскорбиновой кислоты:
В производстве синтетической аскорбиновой кислоты D-сорбит является первым промежуточным продуктом синтеза. D-сорбит представляет собой белый кристаллический порошок, легко растворимый в воде. Сырьем для его производства является D-глюкоза. Это сравнительно дорогое сырье, стоимость его составляет 40-44% от себестоимости аскорбиновой кислоты, поэтому замена D-глюкозы на непищевые виды сырья является важной проблемой.
Процесс восстановления D-глюкозы можно осуществлять двумя методами:
Электролитическое восстановление D-глюкозы в D-сорбит осуществляется при комнатной температуре в электролизерах со свинцовыми анодами и катодами из сплава никеля. Процесс проводят в присутствии NaOH и сульфата натрия или аммония при рН=10. Преимущество процесса заключается в мягких условиях его проведения, в отсутствии дорогостоящих катализаторов и автоклавов. Однако в процессе электролитического восстановления получается раствор D-сорбита, загрязненный его изомером-D-маннитом (до 15%). Разделение этих изомеров представляет большие трудности. Недостатком процесса является также высокая щелочность раствора и сложность конструкции электролизера. Поэтому в настоящее время на витаминных предприятиях принят каталитический метод.
Каталитическое гидрирование (восстановление) можно представить следующей схемой:
Выход составляет 98-99% от теоретически возможного. Особенностью этой стадии производства является протекание ряда побочных реакций: окисление D-глюкозы (I) в D-глюконовую кислоту (VI) кислородом воздуха в присутствии катализатора; фенолизация D-глюкозы в щелочной среде с последующей изомеризацией в D-фруктозу (II) и D-маннозу (IV). D-фруктоза может далее превращаться в D-сорбит (III) и D-маннит (V). В побочных процессах гидрогенолиза глюкозы, кроме D-сорбита, образуются также этиленгликоль, глицерин, пропиленгликоль и др. побочные продукты.
2. Микробиологическое производство ферментов
Ферменты, или энзимы — обычно белковые молекулы или молекулы РНК (рибозимы) или их комплексы, ускоряющие (катализирующие) химические реакции в живых системах.
Применяют два способа выращивания продуцентов ферментов: поверхностный и глубинный.
Поверхностный способ предусматривает выращивание микроорганизмов на поверхности твердых, жидких, полужидких или сыпучих материалов. Этот способ создает хорошие условия для максимального контакта микроорганизмов с кислородом воздуха. Его используют в основном при выращивании мицелиальных грибов.
Глубинный способ предусматривает выращивание микроорганизмов на жидких средах. Этот способ применяют преимущественно при использовании в качестве продуцентов ферментов бактерий и других микроорганизмов, способных интенсивно развиваться в условиях недостаточного контакта клеток с кислородом. Он может быть применен и для культивирования аэробных микроорганизмов, какими являются плесневые грибы и некоторые бактерии, но для этого необходимо интенсивно аэрировать среду.
При поверхностном способе культивирования оптимальная температура для развития мицелиальных грибов 28…30°С, бактерий 32…38°С, относительную влажность воздушной среды на поверхности субстрата необходимо поддерживать в пределах 60…70%. Обязательным условием этой технологии является аэрация растильной камеры.
Микроорганизмы синтезируют различные ферменты в определенной последовательности. Так, например, при использовании грибов Asp. orizae максимальное количество амилаз накапливается за 21…30 ч, образование же цитолитических ферментов начинается значительно позже и для максимального накопления этих ферментов требуется увеличить длительность культивирования до 48 ч.
Регулируя состав питательной среды, условия и длительность культивирования, можно достичь превалирующей активности одного фермента в комплексе ферментов препарата.
Температура культивирования зависит от видовых особенностей микроорганизмов и колеблется в широких пределах. Для равномерного распределения клеток по объему аппарата, улучшения их контакта с питательными веществами, обеспечения отвода от клеток продуктов их жизнедеятельности осуществляют перемешивание культуральной среды.
При получении культуры поверхностным способом ферменты из питательной среды экстрагируют водой, отделяют экстракт от твердой фазы, сгущают до концентрации сухих веществ 50% или высушивают.
При глубинном культивировании отделяют клетки микроорганизмов от культуральной жидкости фильтрацией или центрифугированием. Фильтрат или центрифугат сгущают до концентрации сухих веществ 40% или высушивают.
Полученные таким образом технические ферментные препараты могут использоваться в жидком виде или в виде порошка.
Для очистки ферментов применяют осаждение их из водных растворов органическими растворителями такими, как метиловый, этиловый, изопропиловый спирты, ацетон; высаливание сульфатами аммония, натрия, цинка, хлоридом натрия; фракционирование. Высушивание предварительно очищенных и сконцентрированных препаратов осуществляют в распылительных сушилках или методом сублимации.
Наименование ферментных препаратов сочетает в себе сокращенное название основного фермента, активность которого в препарате преобладает, и видовое название микроорганизма-продуцента. Так, препарат, в котором превалирующим ферментом является амилаза, синтезированная мицелиальным грибом Asp. oryzae, называют амилоризином, если применялась культура Вас. subtilis — амилосубтилином.
В наименовании препарата отражаются способ культивирования микроорганизмов, степень очистки препарата и степень концентрирования ферментов. С этой целью после наименования препарата ставится индекс. Например, Амилоризин П10х или Амилосубтилин Г20х. В индексе буква П означает, что препарат получен поверхностным способом культивирования, а буква Г — глубинным. Буква х условно обозначает количество фермента в стандартной (обладающей строго определенной активностью на единицу массы), глубинной или поверхностной культурах. Цифра перед буквой х отражает степень очистки препарата.
3. Иммобилизованные ферменты
Иммобилизованные ферменты (от лат. immobiiis — неподвижный), препараты ферментов, молекулы к-рых связаны с матрицей, или носителем (как правило, полимером), сохраняя при этом полностью или частично свои каталитич. св-ва. Иммобилизованные ферменты обычно не раств. в воде; между двумя фазами возможен обмен молекулами субстрата, продуктов каталитич. р-ции, ингибиторов и активаторов. Существует неск. осн. способов иммобилизации ферментов: 1) путем образования ковалентных связей между ферментом и матрицей; 2) полимеризацией мономера, образующего матрицу, в присут. фермента, к-рый при этом оказывается включенным в сетку полимера — обычно геля; 3) благодаря электростатич. взаимод. противоположно заряженных групп фермента и матрицы; 4) сополимеризацией фермента и мономера, образующего матрицу; 5) связыванием фермента и матрицы в результате невалентных взаимод. — гидрофобных, с образованием водородных связей и др.; 6) инкапсулированием — созданием около молекул фермента полупроницаемой капсулы, напр., включением фермента в липосомы; 7) сшиванием молекул фермента между собой, напр., глутаровым альдегидом, диметиловым эфиром диимида адипиновой к-ты. Особый случай иммобилизации проведение ферментативных р-ций в двухфазной системе, когда фермент находится в водной фазе, а субстраты и продукты р-ции распределяются между орг. и водной фазами, что позволяет в зависимости от коэф. распределения в-в между фазами сдвигать равновесие р-ции в нужную сторону; диспергирование фаз увеличивает пов-сть их раздела и тем самым улучшает доступ субстрата к ферменту. Среди способов иммобилизации наиб. распространение получили ковалентное связывание фермента с матрицей и включение фермента в гель. В первом случае в качестве матрицы обычно используют целлюлозу, декстрановые гели (сефароэу, агарозу), микропористые стекла или кремнеземы, а также синтетич. полимеры. Матрицу при ковалентной иммобилизации ферментов обычно предварительно активируют, обрабатывая, напр., бромцианом, азотистой к-той или цианурхлоридом. Благодаря этому она становится носителем активных группировок, к-рые способны вступать в р-цию сочетания, взаимод. с группами NH2, ОН, СООН. Во втором случае в качестве гелеобразующего полимера используют полиакриламид. На практике иммобилизация часто осуществляется одновременно неск. способами. Так, при фиксации ферментов ковалентными связями между их молекулами и матрицей обычно возникают также нековалентные взаимодействия. Известны способы предварит. хим. модификации молекул фермента низкомол. в-вами или р-римыми полимерами, имеющими заряженные группировки, что изменяет у таких модифицир. белков электростатич. заряд молекулы и позволяет достаточно прочно сорбировать их на ионообменных смолах. При всех типах иммобилизации матрица, взаимодействуя с ферментом, может инактивировать последний или создавать пространств. затруднения для доступа субстрата к активному центру. При ковалентном связывании фермента для предотвращения отрицат. влияния матрицы между ней и молекулой фермента вводят разобщающую цепь атомов — спейсер (наз. также «вставкой» или «ножкой»). Кроме того, часто стремятся использовать для иммобилизации гидрофильные матрицы, создающие вблизи фермента более естеств. микроокружение. При иммобилизации ферментов необходимо, чтобы активные группы матрицы не блокировали каталитич. центр фермента, а условия иммобилизации не приводили к потере его активности. Определенные ограничения на способ иммобилизации налагают и особенности субстрата. Так, в случае высокомол. субстратов нельзя использовать методы инкапсулирования или включения фермента в гель. Если матрица несет на себе заряды, то заряд субстрата влияет на кинетич. параметры р-ции: разноименные заряды на носителе и субстрате увеличивают скорость р-ции, катализируемой иммобилизованными ферментами, одноименные заряды ее снижают и м. б. причиной полной потери активности препарата. Заряды носителя и субстрата влияют также на величину рН, при к-рой скорость ферментативной р-ции максимальна. Важную роль играет распределение субстрата между фазами иммобилизованного фермента и р-ра. Ограниченная доступность субстрата к активному центру фермента может привести к изменению специфичности последнего. Особенно это Характерно для высокомол. субстратов, к-рые из-за малого коэф. диффузии медленно переходят в фазу иммобилизованного фермента, что приводит к относит. увеличению скоростей др. р-ций с участием субстратов меньших размеров. В нек-рых случаях возможно также изменение направления р-ции. Так, фермент эндополигалактуроназа, катализирующий расщепление полигалактуроновой к-ты в середине молекулы, после иммобилизации отщепляет низкомол. фрагменты от концов молекулы. Существ. влияние на кинетику р-ций, катализируемых иммобилизованными ферменами, оказывают два диффузионных барьера — внешний и внутренний. Первый обусловлен наличием тонкого неперемешиваемого слоя р-рителя вокруг частицы иммобилизованного фермента (слоя Нернста). Толщина этого слоя зависит от скорости перемешивания. Поэтому увеличение последней или скорости тока р-ра в колонке с иммобилизованным ферментом увеличивает скорость ферментативной р-ции. Внутр. диффузионный барьер возникает вследствие ограничения своб. диффузии субстрата внутри сетки полимерной матрицы. Иммобилизация ферментов создает ряд преимуществ. К ним относятся: более высокая стабильность ферментных препаратов, возможность их удаления из реакц. среды и его повторного использования, а также возможность создания непрерывных процессов на ферментных колонках. Важное значение имеет относит. стабильность иммобилизованных ферментов к денатурирующим воздействиям — нагреванию, действию агрессивных сред, автолизу и др. Последнему подвержены протеолитич. ферменты. Иммобилизация разобщает молекулы этих ферментов и полностью исключает такой процесс. Благодаря этому удалось изучить механизм образования протеолитич. фермента пепсина из его предшественника пепсиногена (при этом от последнего отщепляется пептид, состоящий из 42 аминокислотных остатков). Было показано, что эта р-ция катализируется самим пепсином. Иммобилизованные ферменты применяют в произ-ве L-аминокислот, 6-аминопенициллановой к-ты, из к-рой получают полусинтетич. пенициллины, в синтезе преднизолона, для удаления лактозы из продуктов питания, используемых больными с лактазной недостаточностью, в изготовлении ферментных электродов для экспресс-определения мочевины, глюкозы и др. в-в, для создания аппаратов «искусств. почка» и «искусств. печень», для удаления эндотоксинов, образующихся в процессе заживления ран и ожогов, при лечении нек-рых онкологии, заболеваний и др. Большое значение приобрели в клинич. и лаб. практике иммуноферментные методы анализа, в к-рых также используются иммобилизованные ферменты.
Размещено на Allbest.ru
Подобные документы
Последствия отсутствия какого-либо из витаминов в пище, ведущего к недостаточному образованию в организме определенных жизненно важных ферментов и, как следствие, к специфическому нарушению обмена веществ. Значение аскорбиновой кислоты, ретинола, тиамина.
Источник