ДЕКАРБОКСИЛИРОВАНИЕ
ДЕКАРБОКСИЛИРОВАНИЕ — процесс отщепления двуокиси углерода (CO2) от органических кислот или аминокислот. В биол, системах существенное значение — биохимическое и физиологическое — имеет Д. аминокислот и кетокислот. Реакция Д. может составлять часть общего механизма превращения аминокислот, в результате чего образуются биогенные амины, обладающие высокой фармакологической активностью.
Д. аминокислот является одним из основных путей промежуточного обмена аминокислот у всех организмов. В зависимости от хим. природы аминокислоты в результате Д. образуются биогенные амины (см.) или новые бета-, и гамма-монокарбоновые аминокислоты. Реакции Д. катализируются специфическими ферментами — декарбоксилазами (см.) и протекают по следующей схеме:
Ферментативному Д. подвергаются только L-стереоизомеры аминокислот; исключение составляет мезо-альфа, эпсилон-диаминопимелиновая к-та, в к-рой содержится два стереоизомерных атома углерода, один находится в L-, а другой в D-конфигурации. В организме могут происходить сопряженные реакции Д. и переаминирования (см.) или реакции Д. и дезаминирования (см.) лизина, аргинина и их производных. Так, у бактерий Pseudomonas обнаружен фермент, катализирующий окислительное превращение L-лизина до дельта-аминовалериановой к-ты, CO2 и NH3:
Реакция Д. аминокислот в животных тканях не является количественно преобладающей реакцией обмена аминокислот, о чем свидетельствует относительно низкая активность декарбоксилаз в их тканях и сравнительно небольшое количество субстратов для Д. Однако продукты Д. имеют большое физиол, значение, биогенные амины, напр., физиологически активны даже в очень низких концентрациях. Впервые К. М. Розанов в 1936 г. показал образование гистамина в животных тканях путем Д. гистидина. В тканях животных интенсивно протекает Д. диоксифенилаланина (см.) с образованием дофамина (окситирамина), который является, по современным представлениям, предшественником норадреналина и адреналина в организме животных. Гистамин понижает кровяное давление, а тирамин, триптамин и особенно 5-окситриптамин (серотонин) обладают гипертензивным действием. Высокой фармакол. активностью обладают некоторые производные этих аминов (адреналин, норадреналин, эфедрин, холин и др.). Ряд данных свидетельствует о повышении кровяного давления при нарушении кровообращения в почках (ишемия и др.) в связи с накоплением в почечной ткани аминов, для окисления которых необходим кислород. Предполагается, что некоторые расстройства психической деятельности обусловлены интоксикацией организма биогенными аминами, образовавшимися в тканях. Т. о., процессы Д. аминокислот в организме, возможно, участвуют в регуляции некоторых физиол, процессов. Кроме того, продукты Д. аминокислот — таурин, бета-аланин и другие необходимы для биосинтеза ряда сложных соединений, выполняющих специфические биол, функции. Ниже представлены уравнения наиболее распространенных реакций Д. аминокислот и их производных в организме животных и человека.
В животных тканях доказано наличие фермента декарбоксилазы ароматических L-аминокислот (КФ 4.1.1.28), катализирующего Д. почти всех ароматических аминокислот.
Ортотирозин, метатирозин и альфа-метилпроизводные триптофана, тирозина и ДОФА также декарбоксилируются этим ферментом. Ферментные препараты из мозгового слоя надпочечников и почек крыс не катализируют, однако, Д. триптофана и тирозина, но декарбоксилируют ДОФА. В тучных клетках найден особый фермент, катализирующий, по-видимому, Д. гистидина. Имеются данные, что триптофан декарбоксилируется ферментными препаратами из почек лишь после окисления его до 5-окситриптофана и что именно 5-окситриптофан является субстратом для Д., в результате к-рого образуется физиологически активный 5-окситриптамин (серотонин).
Большое физиол. значение для человека и животных имеет Д .L-глутамино-вой к-ты (см. Глутаминовая кислота). Открытие гамма-аминомасляной к-ты (ГАМК) последовало за обнаружением в гомогенатах мозга L-глутаматдекар-боксилазы (КФ 4.1.1.15), катализирующей Д. L-глутамата с образованием гамма-аминомасляной кислоты.
Есть основания считать, что ГАМК относится к числу передатчиков нервных импульсов. Кроме того, ГАМК может переаминироваться с пировиноградной, альфа-кетоглутаровой и, возможно, рядом других кетокислот с образованием соответствующей аминокислоты и полуальдегида янтарной к-ты; окисление последнего до янтарной к-ты обеспечивает функционирование обходного пути окисления L-глутами-новой к-ты, минуя альфа-кетоглутаровую к-ту. На схеме показано сопряжение двух путей окисления L-глутамино-вой к-ты с циклом Трикарбоновых к-т (см. Трикарбоновых кислот цикл).
Для митохондрий мозга именно L-глутаминовая к-та, а не глюкоза является основным субстратом дыхания. В этой связи обходной путь превращения L-глутаминовой к-ты с участием глутаматдекарбоксилазы приобретает большое физиол, значение. По полученным на высших растениях данным В. Л. Кретовича (1972), регулированию системы глутаминовая к-та ГАМК + CO2 принадлежит существенная роль в общем процессе регуляции содержания в клетке глутаминовой к-ты и глутамина, являющегося исходным веществом для биосинтеза многих жизненно важных для растительного организма соединений. Вероятно, что такую же роль Д. L-глутаминовой к-ты играет в организме животных и человека.
Процесс Д. широко распространен у микроорганизмов. При гниении белков образование аминов вызывается Д. различных аминокислот под действием бактериальных декарбоксилаз (см. Гниение).
Значительных достижений в исследовании Д. аминокислот у микроорганизмов добились советские исследователи. С. Р. Мардашев в 1947 г. из клеток бактерии Pseudomycobacterium n. sp. выделил специфическую декарбоксилазу, отщепляющую CO2 от бета-COOH-группы L-аспарагиновой к-ты с образованием a-аланина. В 1950 г. в той же лаборатории был выделен вид Micrococcus п. sp., содержащий декарбоксилазу, специфичную в отношении L-гистидина. Используя эти бактерии, С. Р. Мардашев с сотр. разработал быстрый и точный метод определения аспарагиновой к-ты и гистидина в белках. Д. L-аспарагиновой к-ты является уникальной реакцией, поскольку при этом декарбоксилируется бета-COOH-, а не альфа-COOH-группа, как это обычно происходит при Д. аминокислот.
Ферментные препараты аспартат-бета-декарбоксилазы (аспартат-1-декар-боксилазы; КФ 4.1.1.11) были получены из ряда микроорганизмов, в т. ч. и из Achromobacter; в последнем случае фермент был получен в кристаллическом состоянии. Этот фермент активируется не только пиридоксаль-5′-фосфатом, что характерно для декарбоксилаз аминокислот, но и каталитическими количествами альфа-кетокислот.
Реакции Д. аминокислот широко распространены также у высших зеленых растений. Важно отметить, что реакции Д. у растений имеют прямое отношение к биосинтезу ряда алкалоидов.
С. Р. Мардашевым и его сотр. было установлено, что уроканиновая к-та является ингибитором гистидиндекарбоксилазы (КФ 4.1.1.22). Т. к. содержание уроканиновой к-ты в коже больных при некоторых дерматозах понижено, можно было предвидеть в этом случае более активное Д. гистидина с образованием гистамина, способствующего дерматозу.
Была сделана попытка применения леч. мазей, содержащих уроканиновую к-ту, для терапии дерматозов; предварительные данные свидетельствуют о положительном эффекте.
Гамма-Аминомасляная к-та — продукт Д. L-глутамата — применяется для лечения патол, состояний, связанных с нарушением функций ц. н. с.: при ослаблении памяти, атеросклерозе мозговых сосудов и нарушениях мозгового кровообращения, после перенесенных травм и параличей, при головной боли, бессоннице, головокружениях, связанных с гипертонической болезнью, в педиатрии — при умственной отсталости.
Д. кетокислот было впервые обнаружено К. Нейбергом в 1911 г. В экстрактах из пивных дрожжей им были найдены специфические ферменты, катализирующие Д. пировиноградной, альфа-кетомасляной, альфа-кетовалериановой и других a-кетокислот с образованием соответствующего альдегида и CO2. Реакция Д. кетокислот протекает по схеме:
Позднее было доказано существование Д. альфа-кетоглутаровой к-ты. Из экстрактов высших растений были выделены специфические декарбоксилазы альфа-кетоглутаровой и щавелево-уксусной к-т. Было показано, что Д. щавелево-уксусной к-ты (оксалата) с образованием пировиноградной к-ты (пирувата) осуществляется p-декарбоксилазой, атакующей бета-COOH-группу, что отличает ее от альфа-декарбоксилазы Нейберга.
В тканях животных альфа-кетокислоты подвергаются окислительному Д. с образованием соответствующих укороченных на один атом углерода карбоновых к-т и CO2. В процессе тканевого обмена углеводов, жиров и белков в качестве промежуточных продуктов образуются Пировиноградная, альфа-кетоглутаровая, щавелево-уксусная и другие а-кетокислоты. Накопление их (особенно пировиноградной к-ты, образующейся также в результате других метаболических превращений) может привести к нарушению физиол, функций, и в первую очередь — функций ц. н. с. Поскольку все декарбоксилазы a-кетокислот являются сложными ферментами, коферментом которых является фосфорилированная форма витамина B1—тиаминпирофосфат, то при B1-авитаминозе имеют место нарушения функций нервной системы, напр, при полиневрите.
Выяснению путей окисления пировиноградной к-ты посвящено много работ. В 1943 г. Г. Кребс предложил схему превращения пировиноградной к-ты через цикл ди- и трикарбоновых к-т (см. Трикарбоновых кислот цикл), в к-ром одна молекула пировиноградной к-ты окисляется с образованием трех молекул CO2 и двух молекул H2O (см. Окисление биологическое). Выяснены детали механизма этой реакции и пути ее регуляции. Основным путем превращения пировиноградной к-ты в животных тканях, у растений и у аэробных микроорганизмов является ее окислительное Д. до ацетил-КоА, катализируемое мультиферментным пируватдегидрогеназным комплексом. Д. альфа-кетоглутаровой к-ты также осуществляется при участии аналогичного альфа-кетоглутаратдегидрогеназного комплекса.
Полное окисление альфа-кетокислот, начинающееся с окислительного Д., до CO2 и H2O способствует освобождению энергии, необходимой для протекания процессов жизнедеятельности в любых живых организмах, причем значительная часть этой энергии накапливается в высокоэргических пирофосфатных связях АТФ.
Библиография: Березов Т. Т. и Лерман М. И. диаминопимелиновая кислота — новая природная аминокислота, Усп. совр, биол., т. 51, в. 3, с. 285, 1961, библиогр.; Браунштейн А. Е. Биохимия аминокислотного обмена, М., 1949, библиогр.; он же, Главные пути ассимиляции и диссимиляции азота у животных, М., 1957, библиогр.; Каган 3. С. и Игнатьева Л. И. Аллостерические свойства декарбоксилазы мезо-a, е-диаминопимелиновой кислоты у накапливающего L-лизин штамма Brevibacterium-22, Докл. АН СССР, т. 197, с. 1196, 1971; Каган 3. С., Кретович В. Л. иДроновА. С. Влияние кетокислот на декарбоксилазу глютаминовой кислоты у пшеницы, Биохимия, т. 28, в. 5, с. 824, 1963, библиогр.; Мардашев С. Р. Энзиматическое декарбоксилирование аминокислот, Усп. совр, биол., т. 28, в. 3, с. 365, 1949, библиогр.; Blaschko H. The amino acid decarboxylases of mammalian tissue, Advanc. Enzymol., v. 5, p. 67, 1945, bibliogr.; Boeker E. А. а. Snell E. E. Amino acid decarboxylases, в кн.: Enzymes, ed. by P. D. Boyer, v. 6, p. 217, N. Y.— L., 1972, bibliogr.; Lovenberg W., Weissbасh H. a. Udenfriend S. Aromatic L — amino acid decar-boxvlase, J. Biol. Chem., v. 237, p. 89, 1962; Meister A. Biochemistry of the amino acids, v. 1—2, N. Y.— L., 1965; Moriguсhi M., Jamamoto T. a. Soda K. Studies on L-lysine decarboxylase from Bacterium cadaveris, Bull. Inst. Chem. Res., Kyoto Univ., v. 51, № 6, p. 333, 1973, bibliogr.; Morris D. R. a. Fillingame R. H. Regulation of amino acid decarboxylation, Ann. Rev. Biochem., v. 43, p. 303, 1974, bibliogr.
Источник
Витамин В1
Опубликовано чт, 20/06/2019 — 14:56
Тиамин (витамин B1) является важным питательным веществом, которое служит кофактором для ряда ферментов, в основном с митохондриальной локализацией. Некоторые зависимые от тиамина ферменты участвуют в энергетическом метаболизме и биосинтезе нуклеиновых кислот, тогда как другие являются частью антиоксидантного механизма. Мозг очень уязвим для дефицита тиамина из-за его зависимости от митохондриальной продукции АТФ. Это положение более очевидно во время быстрого роста детей, при котором дефицит тиамина обычно связан с недоеданием или генетическими дефектами. Дефицит тиамина способствует возникновению ряда расстройств неврологических и психопатологических симптомов (спутанность сознания, снижение памяти и нарушения сна) до тяжелой энцефалопатии, атаксии, застойной сердечной недостаточности, мышечной атрофии и даже смерти.
Основным питательным веществом тиамина (витамин B1) является водорастворимый серосодержащий витамин, принадлежащий к комплексу витаминов группы B. Не будучи эндогенно синтезированным, единственным доступным источником тиамина являются некоторые продукты питания (говядина, птица, крупы, орехи и бобы). Организм не хранит тиамин > 30 мг, а период полураспада для тиамина составляет всего 9–18 дней. При среднем потреблении продуктов питания на уровне в 2000 ккал,( потребляемом ежедневно), минимальная потребность в тиамине составляет 0,66 мг , однако, рекомендуемая суточная доза для взрослых мужчин и женщин составляет 1,2 и 1,1 мг соответственно. Во время беременности или кормления грудью потребность в витамине В1 увеличивается до 1,4 мг / день. У детей рекомендуемая диета (RDA) зависит от возраста и составляет от 0,2 мг (от рождения до 6 месяцев) до 0,6 мг (от 6 месяцев до 8 лет). В организме человека богатыми тиамином ткани являются скелетные мышцы, сердце, печень, почки и мозг.
В развитых странах преобладающее использование промышленной обработки пищевых продуктов часто истощает содержание тиамина наряду с другими витаминами и питательными веществами. Повышенное потребление обработанных пищевых продуктов в форме простых углеводов, не дополненных адекватными уровнями тиамина, было названо «калорийным недоеданием». С другой стороны , по меньшей мере, у 29% пациентов с ожирением, которым предстоит хирургическое операции на бариатрической стадии, отмечается как дефицит тиамина. Поскольку тиамин является ключевым фактором метаболизма глюкозы, увеличение потребления углеводов будет пропорционально увеличивать диетическую потребностьи в тиамине (минимум 0,33 мг на 1000 ккал). Таким образом, вместо того, чтобы сосредоточиться на RDA тиамина, важно сопоставить его потребление с потреблением углеводов, а также с общим потреблением калорий.
В развивающихся странах дефицит тиамина остается широко распространенной проблемой из-за высоких показателей потребления белого риса. Поскольку домашние методы измельчения заменяются промышленным измельчением и переработкой риса, важные питательные вещества (такие как тиамин) в отрубях удаляются. Азиатские страны потребляют около 90% риса, произведенного во всем мире, реализуя , по оценкам специалистов , 60% суточной потребности населения в потреблении энергии с пищей, и, следовательно, дефицит тиамина достаточно распространен среди 15% подросткового населения. Дефицит тиамина может развиться при употреблении в пищу диет, загрязненных метаболизирующими тиамин ферментами (например, тиаминазой) или подверглись инактивации тиамина нагреванием и / или диоксидом серы. Чрезмерное употребление танинсодержащих или пищевых продуктов, богатых кофеином, теобромином и теофиллином (например, содержащихся в кофе, шоколаде и чае соответственно), может инактивировать тиамин, тем самым нарушая его статус.
Другие факторы риска , которые увеличивают вероятность недостаточного потребления тиамина включают старение, низкий экономический статус, расстройства пищевого поведения, соматические заболевания , в частности, влияющие на желудочно — кишечный тракт, искусственное питание, бариатрическая хирургия, диабет и злоупотребление алкоголем. Сообщается о неудовлетворенных потребностях в увеличении потребления тиамина в пищу во время лактации, беременности и повышенной физической активности. Во время лактации у детей повышается риск развития авитаминоза , в частности, у дефиците тиамина у матерей. Например, у 27% женщин детородного возраста в Камбодже имеет место дефицит тиамина, а у 38% младенцев диагностирован дефицит тиамина, что является критической проблемой, которая в значительной степени способствует смертности 3-месячных детей. Однако даже при наличии достаточного потребления тиамина его дефицит может быть обусловлен генетическими факторами, то есть патогенными мутациями генов в ключевых регуляторах пути трансформации тиамина, включая тиаминпирофосфокиназу 1 (ТПК1), тиаминдифосфаткиназу (TDPK), тиаминтрифосфатазу (THTPA) и переносчики тиамина (SLC25A19, SLC19A2 / THTR1 и SLC19A3 / THTR. также было показано, что переносчик органических катионов 1 (OCT1) действует как транспортер тиамина в печени.
Независимо от основной причины дефицита тиамина большинство симптомов проявляются на неврологическом уровне. Дефицит тиамина может вызвать повреждение тканей головного мозга, ингибируя использование энергии мозга, учитывая критическую роль тиамин-зависимых ферментов, связанных с использованием глюкозы. Это подтверждается значительным уровнем поглощения тиамина гематоэнцефалическим барьером, что подчеркивает высокую потребность мозга в тиамине и потребность в его снабжении для поддержания адекватных функций мозга, особенно в тех областях мозга, где требуются высокий уровень метаболизма и оборот тиамина.
Как и у большинства гидрофильных микроэлементов, поглощение тиамина происходит в основном в тонком кишечнике. В пищеварительном тракте пищевые белки гидролизуются, выделяя тиамин. В просвете кишечника щелочные фосфатазы катализируют гидролиз тиаминфосфорилированных производных в свободный тиамин. Нефосфорилированный свободный тиамин в концентрациях, превышающих 1 мкМ, поступает в энтероцит путем пассивной диффузии, тогда как на более низких уровнях он транспортируется через систему насыщения тиамином / H + ( переносчик тиамина 1 или THTR1) в зависимости от количества энергии. В условиях дефицита тиамина в клетках Caco2 в культуре наблюдалась активация экспрессии переносчика тиамина 2 (THTR2), что позволяет предположить, что диета может модулировать экспрессию этого транспортера . Внутри энтероцита тиамин фосфорилируется до тиаминпирофосфата (TPP) с помощью TPK1. Затем большая часть TPP дефосфорилируется до тиаминмонофосфата (TMP), чтобы пересечь базальную мембрану энтероцита. TMP высвобождается в кровоток через ATPase-зависимую транспортную систему. Свободный тиамин также может попасть в кровь через транспортер тиамина 2 (THTR2), расположенный в основном на базолатеральной мембране энтероцита. Попадая в кровь, в то время как очень низкие уровни TMP и тиамина циркулируют свободно в плазме или сыворотке, более 90% фосфорилированного тиамина (в форме TPP) присутствует в эритроцитах и лейкоцитах. Примечательно, что изоформа 3 носителя SLC44A4 недавно была описана как носитель TPP в толстой кишке. Первоначально SLC44A4 был описан как транспортер холина, связанный с не нейрональным синтезом холина и необходимый для эфферентной иннервации волосковых клеток в оливо-кохлеарном пучке для поддержания физиологической функции наружных волосковых клеток и защиты волосковых клеток. от акустической травмы. Последние данные указывают на то, что этот носитель может опосредовать абсорбцию микробиоты, генерируемой TPP (особенно у младенцев), и способствовать гомеостазу тиамина хозяина.
Клеточное поглощение тиамина из кровотока может быть опосредовано любым из двух высокоаффинных носителей: THTR1 (кодируется SLC19A2) и THTR2 (кодируется SLC19A3). Эти транспортеры выражены повсеместно, но THTR1 наиболее распространен в кишечнике, скелетных мышцах, нервной системе и глазах, за которым следуют плацента, печень и почка, тогда как THTR2 находится в основном в жировой ткани, печени, лимфоцитах, селезенке, желчном пузыре, плаценте. поджелудочной железе и мозге. После внутриклеточной транспортировки свободный тиамин быстро фосфорилируется до TPP с помощью тиаминпирофосфокиназы (TPK1). Вторая киназа, TDPK, добавляет фосфатную группу к TPP для генерирования тиаминтрифосфата (TTP). TPP и TTP могут быть дефосфорилированы, соответственно, до TMP и TPP с помощью фосфатаз — простатической кислой фосфатазы (ACPP) и THTPA соответственно.
До 90% от общего количества тиамина в организме остается в его дифосфате , метаболически активной форме (TPP), тогда как остальное находится в виде TMP и TTP. TPP является кофактором нескольких тиамин-зависимых ферментов, участвующих в метаболизме углеводов и жирных кислот, а именно цитозольной транскетолазы (TKT), пероксисомальной 2-гидроксиацил-CoA лиазы 1 и трех митохондриальных ферментов (пируватдегидрогеназы, α-кетоглутаратдегидрогеназы и разветвленных). -цепные α-кетокислотные дегидрогеназные комплексы. Биохимическая роль TPP хорошо понятна, но биологическая значимость и вклад TTP не совсем ясны. Ранее считалось, что это специфическая нейроактивная форма тиамина, но в последнее время сообщалось, что TTP (составляет ∼10% от общего пула тиамина мозга) участвует в возбудимости мембраны и нервной проводимости, действуя в качестве модулятора проницаемости хлоридно-натриевых каналов.
В цитозоле TPP действует как кофактор для TKT, ключевого фермента неокислительной ветви пентозофосфатного пути (PPP). Этот метаболический путь генерирует никотинамидадениндинуклеотидфосфат (NADPH) и рибозо-5-фосфат (R5P). NADPH является ключевым восстановителем в биосинтетических реакциях и является одним из субстратов биосинтетических ферментов (синтез жирных кислот) и антиоксидантных ферментов, таких как глутатионпероксидаза-редуктазная система и тиоредоксинпероксидазы.Важное участие R5P в биосинтезе ДНК и РНК подчеркивает критическую роль тиамина в высокопролиферирующих тканях.
Исходя из его роли в биохимических путях, предполагается , что дефицит тиамина приведет к усилению окислительного стресса и снижению пролиферации клеток, а также к снижению синтеза жирных кислот (включая миелин) с тяжелыми последствиями, особенно во время развития мозга. В соответствии с этим предположением, дефицит тиамина снижает активность TKT и приводит к нарушению PPP и снижению нейрогенеза в коре и гиппокампе во время развития нервной системы.
Пероксисомы играют важную роль в катаболизме перекиси водорода, а также в укорочении очень длинных жирных кислот (которые не могут подвергаться прямому катаболизму β-окисления митохондрий) и α-окислении. В последнем процессе TPP-зависимый фермент 2-гидроксиацил-СоА лиаза 1 (HACL1) катализирует расщепление 3-метилразветвленных и 2-гидрокси длинноцепочечных жирных кислот с прямой цепью. Фитановая кислота (3-метилзамещенная 20-углеродная жирная кислота с разветвленной цепью), в отличие от большинства жирных кислот, не может подвергаться β-окислению из-за наличия метильной группы в положении 3. Как таковой, он расщепляется HACL1 в результате первоначального α-окисления. Эта жирная кислота с разветвленной цепью получается из рациона, особенно из молочных продуктов и красного мяса. Нарушение катаболизма фитановой кислоты из-за неадекватных уровней TPP приводит к накоплению триглицеридов, что может вызывать негативные эффекты, такие как мозжечковая атаксия, периферическая полиневропатия, потеря зрения и слуха, аносмия, а в некоторых случаях дисфункция сердца и эпифизарная дисплазия. Симптомы, вызванные дефицитом тиамина, характерны для болезни Рефсума, которая вызвана патогенными мутациями в HACL1. Некоторые из симптомов также наблюдаются при аутосомно-рецессивном системном расстройстве, синдроме Зеллвегера и других пероксисомальных заболеваниях, включая неонатальную адренолейкодистрофию. Синдром Зеллвегера вызван патогенными мутациями в генах пексинов, которые кодируют белки, необходимые для сборки функциональных пероксисом. Он характеризуется дефицитом пути окисления пероксисомных жирных кислот, вызывающего тяжелую неврологическую и печеночную дисфункцию, а также черепно-лицевые нарушения.
Большая часть (∼90%) цитозольного TPP транспортируется в митохондрии с помощью митохондриального переносчика тиаминпирофосфата MTPPT, продукт гена SLC25A19. Этот транспортер обеспечивает обмен цитозольного TPP на митохондриальный TMP; Попав в цитозоль, TMP метаболизируется и превращается обратно в TPP. В митохондриях TPP является критическим кофактором для трех ферментов, а именно пируватдегидрогеназы, α-кетоглутаратдегидрогеназы и α-кетокислотной дегидрогеназы с разветвленной цепью (PDH, αKGDH и BCKDH, соответственно).
Пируватдегидрогеназный комплекс — мультисубъединичный комплекс катализирует TPP- зависимое декарбоксилирование пирувата, генерируя ацетил-КоА, который затем входит в цикл Кребса. Регуляция активности PDH представляет собой ключевой метаболический «переключатель», влияющий на выбор «топлива», то есть между окислением жирных кислот и гликолитическим потоком. Было высказано предположение, что неспособность регулировать выбор топлива для производства метаболической энергии лежит в основе «метаболической жесткости», приводящей к метаболическим нарушениям. Следовательно, опосредованное тиамином ингибирование комплекса PDH блокирует систему в окислении глюкозы в пируват, что приводит к увеличению лактата и снижению клеточной продукции АТФ. Как и ожидалось, в тяжелых случаях метаболический дефицит проявляется как фатальный лактоацидоз у новорожденных, тогда как в более легких случаях неврологические состояния могут приводить к структурным нарушениям в центральной нервной системе (ЦНС), судорогам, умственной отсталости и спастичности.
В случае дефицита тиамина наиболее пораженными участками мозга, по-видимому, являются мозжечок, мамиллярные тела, таламус, гипоталамус и ствол мозга у взрослых. Что касается дефицита тиамина, Zhao et al.(2009) показали, что у мышей депривация тиамина в течение 14 дней приводила к различной степени дефицита ферментов при тестировании на активность TKT, PDH и αKGDH в коре и гиппокампе.
Патогенные мутации в генах, кодирующих ферменты и транспортеры, участвующие в метаболизме тиамина, приводят к симптомам, сходным с теми, что обнаруживаются при дефиците тиамина на основе питания, и перекрываются с нарушениями митохондриальной дисфункции . Эти мутации, затрагивающие гены, ответственные за транспортеры тиамина 1 ( SLC19A2 ; OMIM 249270) и 2 ( SLC19A3 ; OMIM 607483), составляют основную причину субоптимального всасывания тиамина в кишечнике и, как следствие, недостаточного клеточного распределения тиамина по организму.
Как указано выше, патология дефицита тиамина влечет за собой нарушение выработки энергии из митохондрий в форме АТФ при использовании субстратов, генерирующих пируват (например, глюкозы), а также повышенный окислительный стресс. В этих условиях глюкоза черезгликолиз образует пируват, который не может войти в цикл Кребса в виде ацетил-КоА из-за низкой активности PDH. Как таковой, пируват трансаминируется в Ala или восстанавливается до лактата спомощью лактатдегидрогеназы. Это согласуется с повышенным уровнем лактата и органических кислот, наблюдаемых в CSF, моче и крови при дефиците тиамина.
Центральная нервная система человека обладает высокой потребностью в энергии: 2% массы тела контролируют около 20% общих метаболических расходов, большая часть которых расходуется на потенциалы возбуждающего действия, на передачу сигналов между нейронами, через химические синапсы, рост аксонов. и миелинизацию. Поскольку глюкоза является основным «топливом» для производства энергии в головном мозге, неудивительно, что митохондриальная дисфункция и последующее нарушение метаболизма глюкозы связаны с несколькими неврологическими расстройствами и нарушениями развития нервной системы и основными психическими заболеваниями, такими как депрессия и шизофрения.
Неврологические симптомы при дефиците тиамина сходны с дефектами, которые чаще всего проявляются как синдром Ли-Ли с вовлечением базальных ганглиев. Следовательно, нервная система, которая специализируется на использовании глюкозы для выработки энергии, кажется наиболее уязвимой для дефицита PDHC из-за истощения TPP. В мозге плохое производство АТФ в митохондриях будет ограничивать поддержание мембранного потенциала посредством действия Na + , K +-АТФазы, тем самым нарушая нервную проводимость и процессы в синапсах. Кроме того, повышенный окислительный стресс из-за более низкой активности TKT повредит критические биомолекулы, инициируя перекисное окисление липидов и окислительное повреждение белков, что приводит к фрагментации, посттрансляционным модификациям и перекрестным связям. Модификация эпитопов на нормальных, эндогенных молекулах может приводить к активации микроглии и иммунных клеток, усугубляя вызванное окислительным стрессом повреждение.
Уровни тиамина в крови и CSF предоставляют ограниченную информацию при оценке состояния тиамина у субъекта, поскольку они не обязательно отражают метаболическую функцию тиамина или прямую связь с его уровнями в тканях. Таким образом, оценки TKT эритроцитов и, если возможно, оценки других тканеспецифичных TPP-зависимых ферментов (PDH, αKGDH) считаются золотыми стандартами. Базовая активность TKT обычно выражается в единицах на грамм гемоглобина (г Hb), но, что более важно, рассчитывается процент активации TKT в добавках к TPP (0-15% считаются нормальными).
Коэффициент активации TKT (эритроциты) и / или активность TPP-зависимых ферментов (лейкоциты, фибробласты кожи и биопсия мышц) обычно сопровождаются тестированием уровней лактата и пирувата в сыворотке, BCAA, органических кислот, а также методами визуализации мозга. Единственными случаями, когда оценка свободного тиамина в плазме / сыворотке и CSF, по-видимому, является ценным диагностическим инструментом, являются случаи патогенных мутаций в SLC19A3. Точно так же экскреция тиамина с мочой также не является надежным методом для оценки его уровня в организме, поскольку он зависит от его потребления и всасывания. Как правило, он выражается в расчете на единицу креатинина для учета функции почек, и следует учитывать возраст, так как нормальные значения у детей различаются [120 нмоль / ммоль креатинина в возрасте 1–13 лет] и взрослые [220 нмоль / ммоль креатинина в возрасте> 18 лет ].
К сожалению, ранние симптомы дефицита тиамина не выражены или недостаточно различимы, чтобы поставить прямой диагноз. Они включают потерю аппетита, тошноту, слабость, апатию, усталость, раздражение, нарушения сна, анорексию и дискомфорт в животе. Кроме того, выявление конкретных клинических симптомов дефицита тиамина является проблематичным, поскольку оно скрывается за счет влияния других сопутствующих состояний (сопутствующих заболеваний), таких как инфекции и / или разнообразные нарушения питания.
Клиническая классификация дефицита тиамина обычно делится на «сухую» (или невритическую, характеризующуюся полиневропатией, сниженным коленным рефлексом и другими сухожильными рефлексами и прогрессирующей сильной слабостью мышц) и «влажную» (или сердечную, характеризующуюся отеком ног, тела и лица высокий сердечный выброс, желудочковая недостаточность и застой в легких).
При раннем подозрении на генерализованный дефицит тиамина рекомендуется незамедлительное введение тиамина и, как правило, эффективное лечение. В литературе сообщается о широком диапазоне терапевтических подходов и доз тиамина от 1,5 до 600 мг / день , с 10–20 мг / день в виде разделенных доз в течение нескольких недель от легкой полиневропатии и 20–30 мг / день. от умеренной до тяжелой, обычно до исчезновения симптомов. Как правило, дефицит тиамина купируеся с помощью доз 5–30 мг / сут внутривенно (в / в) или внутримышечно (в / м) три раза в день, затем 5–30 мг / сут перорально до исчезновения симптомов. Однако этот подход заметно менее эффективен для людей с хроническими формами нарушений, связанных с дефицитом тиамина, включая энцефалопатии или дефициты TPK1. В последнем случае стоило бы исследовать лечение непосредственно с помощью TPP; однако неясно, будет ли эта форма фосфорилированного тиамина преодолевать гематоэнцефалический барьер и / или достигать субклеточных мишеней, таких как PDH.
Ряд исследований показал обратную связь между уровнями тиамина и симптомами депрессии у взрослых. Исследование показало, что симптомы депрессии значительно улучшились у пациентов с большой депрессией после 6 недель приема тиамина по сравнению с плацебо. Эффекты от приема тиамина могут быть значительными в качестве паллиативного лечения при послеродовой депрессии и играть важную роль в последующем когнитивном развитии ребенка. PPD ассоциируется с повышенным риском развития неспособности к обучению, синдрома дефицита внимания / гиперактивности (ADHD) и тревожных расстройств у детей младшего возраста, что делает PPD критической проблемой как для матери, так и для младенца. Следовательно, добавки с тиамином могут в некоторой степени улучшить углеводный обмен, функцию митохондрий и выработку энергии в мозге.
Источник