Опыты, проведенные со срезами тканей или переживающими органами, показали, что при добавлении аминокислоты к тканям (или при пропускании раствора аминокислоты через переживающий орган) образуются аммиак и соответствующая α-кетокислота. Аналогичные данные были получены в опытах с растениями и с микроорганизмами.
Доказано существование четырех типов дезаминирования аминокислот (отщепление аминогруппы). Выделены соответствующие ферментные системы, катализирующие эти реакции, и идентифицированы продукты распада. Во всех случаях NH2-группа аминокислоты освобождается в виде аммиака:
Помимо аммиака, продуктами дезаминирования являются жирные кислоты, оксикислоты и кетокислоты. Для животных тканей, растений и большинства аэробных микроорганизмов преобладающим типом реакции является окислительное дезаминирование аминокислот, хотя исключением является гистидин, подвергающийся внутримолекулярному дезаминированию даже в животных тканях (точнее, в печени и коже, где открыт специфический фермент гистидинаммиаклиаза, катализирующий эту реакцию).
Рассмотрим подробно механизм окислительного дезаминирования аминокислот, протекающего в две стадии:
Первая стадия является ферментативной с образованием неустойчивого промежуточного продукта (иминокислота), который во второй стадии спонтанно без участия фермента, но в присутствии воды распадается на аммиак и α-кетокислоту. Следует указать, что оксидазы аминокислот (L- и D-изомеров), иногда называемых дегидрогеназами, являются сложными флавопротеидами, содержащими в качестве кофермента флавинмононуклеотид (ФМН) или флавинадениндинуклеотид (ФАД) (см. Тканевое дыхание), выполняющие в этой реакции роль акцепторов двух водородных ионов, отщепляющихся от аминокислоты. Показано, что оксидаза L-аминокислот содержит ФМН, а оксидаза D-аминокислот — ФАД в качестве простетической группы. Схематически реакции окислительного дезаминирования аминокислот с участием коферментов могут быть представлены в следующем виде:
Укажем также, что восстановленные флавиннуклеотиды оксидаз L- и D-аминокислот могут непосредственно окисляться молекулярным кислородом, образуя перекись водорода, которая подвергается расщеплению под действием каталазы на воду и кислород:
Впервые в лаборатории Грина из ткани печени и почек крыс была выделена оксидаза, катализирующая дезаминирование 12 природных (L-изомеров) аминокислот. Позже было показано, что этот фермент имеет оптимум pH действия в щелочной среде (pH 10,0) и что при физиологических значениях pH среды ее активность в 10 раз ниже, чем при pH 10,0. Поскольку в тканях животных и человека нет подобной среды, было высказано предположение, что оксидазе L-аминокислот, вероятнее всего, принадлежит ограниченная роль в процессе окислительного дезаминирования природных аминокислот. Это предположение полностью подтвердилось, как будет показано ниже. В животных тканях со значительно большей скоростью дезаминируются неприродные (D-изомеры) аминокислоты. Эти данные подтвердились после того, как из животных тканей был выделен специфический фермент оксидаза D-аминокислот, который в отличие от оксидазы L-аминокислот оказался высокоактивным при физиологических значениях pH среды. Непонятным до сих пор остается вопрос о том, каково назначение активной дегидрогеназы D-аминокислот в тканях, если поступающие с пищей белки и белки тела животных и человека состоят исключительно из природных (L-изомеров) аминокислот. Было высказано предположение, что часть L-изомеров аминокислот под действием рацемаз микрофлоры кишечника превращается в рацемические смеси (DL-изомеры) и после их всасывания в кишечнике D-изомер будет, по-видимому, расщепляться активной оксидазой в тканях. Однако такой путь рацемизации доказан для небольшого числа аминокислот, в частности для глутаминовой кислоты и аланина.
В животных тканях Эйлером открыт высокоактивный при физиологических значениях pH и специфический фермент глутаматдегидрогеназа, катализирующий окислительное дезаминирование L-глутаминовой кислоты. Он является анаэробным ферментом и чрезвычайно широко распространен во всех живых объектах. В качестве кофермента глутаматдегидрогеназа содержит НАД и катализирует обратимую реакцию дезаминирования L-глутамата. Реакция включает анаэробную фазу дегидрирования глутаминовой кислоты с образованием промежуточного продукта — иминоглутаровой кислоты и спонтанный гидролиз последней на аммиак и α-кетоглутаровую кислоту в соответствии со следующей схемой:
Первая стадия окисления глутаминовой кислоты аналогична реакции окислительного дезаминирования; восстановленный НАД (НАДН2) далее окисляется при участии флавиновых ферментов и цнтохромной системы (см. Тканевое дыхание) с образованием конечного продукта — воды. Образовавшийся аммиак благодаря обратимости ферментативной реакции в присутствии НАДН2 (более активным донором водорода в синтетической реакции оказался НАДФН2) может участвовать в восстановительном аминировании α-кетоглутаровой кислоты с образованием глутаминовой кислоты. В последней реакции глутаматдегидрогеназа работает как бы в режиме синтеза и при физиологических значениях pH реакция больше сдвинута в сторону синтеза глутаминовой кислоты. Глутаматдегидрогеназа является также одним из наиболее изученных ферментов азотистого обмена. Это олигомерный фермент (молекулярная масса 312 000), состоящий из 6 субъединиц (каждая из которых имеет молекулярную массу около 52 000), проявляющий свою основную активность только в мультимерной форме. При диссоциации этой молекулы на субъединицы, наступающей легко в присутствии НАДН2, ГТФ и некоторых стероидных гормонов, фермент теряет свою главную глутаматдегидрогеназную функцию, но приобретает способность дезаминировать ряд других аминокислот, в частности аланин. Эти данные по изменению активности и специфичности действия свидетельствуют об аллостерической природе глутаматдегидрогеназы, действующей как регуляторный фермент в аминокислотном обмене.
Помимо перечисленных выше четырех типов дезаминирования аминокислот и ферментов, катализирующих эти превращения, в животных тканях и в печени человека открыты также три специфических фермента, катализирующих неокислительное дезаминирование серина, треонина и цистеина:
Конечными продуктами реакции являются пировиноградная и α-кетомасляная кислоты, аммиак и сероводород. Поскольку все три фермента требуют присутствия пиридоксальфосфата в качестве кофермента, реакция неокислительного дезаминирования, вероятнее всего, протекает с образованием шиффовых оснований как промежущчных метаболитов (см. ниже). Наиболее изученный фермент — треониндегидратаза, которая является не только аллоcтерическим ферментом, но и, наряду с триптофанлирролазой и тирозинтрансаминазой, индуцибельным ферментом в животных тканях (индукция синтеза ферментов de novo является общим свойством микроорганизмов). Так, при скармливании крысам гидролизата казеина активность треониндегид-ратазы печени повышается почти в 300 раз. Этот синтез тормозится ингибитором белкового синтеза — пуромицином. Поскольку эта индукция почти полностью тормозится глюкозой пищи, треониндегидратаза, по-видимому, является ответственной за глюконеогенез, так как α-кетомасляная кислота легко превращается в пируват и соответственно в глюкозу.