Меню

Общая биохимия витамины практикум

Практикум Разделы: «Биохимия белков, витаминов и гормонов» занятие 19

Главная > Документ

Информация о документе
Дата добавления:
Размер:
Доступные форматы для скачивания:

Министерство здравоохранения Республики Беларусь

Учреждение образования «Гомельский государственный медицинский университет»

А. И. Грицук, В. Т. свергун, А. Н. Коваль

Разделы: «Биохимия белков, витаминов и гормонов»

занятие 19 Белки-1. Переваривание и всасывание белков.

Занятие 20 Белки-2. Тканевый обмен аминокислот. Обезвреживание продуктов обмена.

занятие 21 Белки-3. Особенности обмена отдельных аминокислот в норме и при патологии.
занятие 22 Белки-4. Нуклеопротеиды. Структура и функции информационных макромолекул.

занятие 23 Белки-5. Биосинтез белка. Регуляция биосинтеза. Патология белкового обмена

ЗАНЯТИЕ 24 Витамины.

занятие 25 Гормоны-1. Общая эндокринология. Механизм действия гормонов.
занятие 26 Гормоны-2. Частная эндокринология. Гормоны эндокринных желез.

занятие 27 Контрольное занятие по разделам «биохимия белков и нуклеиновых кислот» и «биохимия витаминов и гормонов»

Биохимия белков и нуклеиновых кислот

Белки-1. Переваривание и всасывание белков

Цель занятия: сформировать представления о пищевой ценности белков, молекулярных механизмах их переваривания и всасывания в желудочно-кишечном тракте, путях формирования пула свободных аминокислот тканей и жидкостей организма. Освоить методы определения кислотности и патологических компонентов желудочного сока.

Исходный уровень знаний и навыков

Студент должен знать:

Строение, классификацию и свойства основных классов аминокислот.

Уровни структурной организации белковой молекулы.

Механизмы мембранного транспорта веществ

Механизм микросомального окисления..

Студент должен уметь:

Проводить титрационный анализ.

Проводить качественные реакции на кровь и молочную кислоту.

Заменимые и незаменимые аминокислоты. Роль белков в питании. Полноценные и неполноценные белки. Нормы белка в питании. Азотистый баланс.

Обмен простых белков. Переваривание белков в ЖКТ. Состав и свойства желудочного сока. Значение компонентов сока в переваривании белков (HCl, пепсин, слизь и др.). Характеристика пепсина. Механизмы образования и секреции HCl в желудочном соке. Регуляция секреции HCl (роль гистамина, гастрина, ацетилхолина и др.).

Кишечный сок. Его состав и свойства. Характеристика панкреатических и кишечных ферментов. Механизм активации трипсина, химотрипсина и др.

Значение градиента pH соков ЖКТ в переваривании белков. Механизмы переваривания белков и всасывания аминокислот в ЖКТ.

Медиаторы и гормоны ЖКТ – гистамин, серотонин, секретин, холецистокинин, гастроингибирующий пептид, соматостатин, глюкагон, энкефалины и др.

Гниение белков в толстом кишечнике. Образование индола, скатола, фенола, сероводорода, аммиака, аминов и др., их роль и механизмы обезвреживания в печени.

Эндогенный пул аминокислот в тканях – пути формирования и утилизации.

Проведение повторного инструктажа по технике безопасности.

1. Роль белка в питании:

а) источник витаминов группы В; б) источник «биогенного» азота; в) источник микроэлементов; г) источник незаменимых аминокислот; д) источник нуклеотидов?

2. К заменимым аминокислотам относятся:

а) аланин; б) пролин; в) изолейцин; г) треонин; д) глицин?

3. Положительный азотистый баланс наблюдается:

а) при голодании; б) в период роста организма; в) при заболеваниях ЖКТ; г) при физической нагрузке; д) при терапии анаболическими стероидами?

4. Какие ферменты расщепляют белок в желудке?

а) пепсиноген; б) гастриксин; в) пепсин; г) химотрипсин; д) гастрин.

а) аутокаталитически; б) ионами Ca 2+ ; в) антитрипсином; г) энтеропептидазой; д) путём ограниченного протеолиза?

6. Ключевыми ферментами для синтеза соляной кислоты являются:

а) пепсин; б) карбоксипептидаза; в) карбангидраза; г) каталаза; д) Н + /К + -АТФ-аза?

7. Выберите пары аминокислот, которые замедляют всасывание друг друга в кишечнике:

а) арг и лиз; б) вал и глу; в) лиз и лей; г) глу и асп; д) гли и гис?

8. Триптофан под действием кишечной микрофлоры может превратиться в:

а) крезол; б) фенол; в) индол; г) скатол; д) ментол?

9.Какие вещества используются в печени для обезвреживания продуктов гниения белков, поступивших из кишечника?

а) ФАФС; б) ГАГ; в) УДФГК; г) глу; д) ИТФ.

10.Какие процессы могут служить источником эндогенного пула аминокислот?

а) биосинтез белка; б) протеолиз белков пищи; в) протеолиз белков катепсинами; г) синтез биогенных аминов; д) синтез заменимых аминокислот de novo.

Лабораторная работа № 1. Количественное определение общей кислотности, общей, свободной и связанной соляной кислоты в одной пробе желудочного сока

Принцип метода. Основан на титровании желудочного содержимого раствором 0,1н NaOH в присутствии индикаторов с различными зонами перехода. Кислотность желудочного сока выражают количеством ммоль едкого натра, нейтрализующего 1 л желудочного сока.

Основные фракции кислот желудочного сока:

“общая кислотность” желудочного сока – это сумма всех кислот желудочного содержимого;

“свободная соляная кислота” – свободная минеральная HCl;

“связанная соляная кислота” – кислореагирующие соли (хлориды) белков и других слабых оснований;

“общая соляная кислота” – сумма свободной и связанной HCl.

Количественное определение свободной соляной кислоты . Свободная соляная кислота оттитровывается раствором 0,1н NaOH в присутствии индикатора диметиламиноазобензола, имеющего зону перехода окраски от красной до оранжевой при pH 3,0. Слабые же кислоты (молочная, уксусная кислота, кислые фосфаты и связанная соляная кислота) при pH 2,9–4,0 находятся в растворе в недиссоциированном состоянии и в реакцию со щелочью не вступают.

Ход работы. К 10 мл желудочного сока добавить 1–2 капли спиртового раствора диметиламиноазобензола и титровать раствором 0,1н NaOH до появления оранжевой окраски.

Произвести расчет на 1000 мл желудочного сока. Так как затраченное на титрование количество едкого натра эквивалентно количеству соляной кислоты в пробе желудочного сока, то количество соляной кислоты в 1 л желудочного сока (в моль/л) составит

количество 0,1н раствора NaOH, затраченное на титрование, мл;

количество NaOH в 1 мл 0,1 N раствора, моль;

количество желудочного сока, взятого для титрования, мл;

объем желудочного сока, мл.

Количественное определение общей кислотности желудочного сока . Титрование общей кислотности желудочного сока проводится раствором 0,1н NaOH в присутствии индикатора фенолфталеина с зоной перехода окраски в пределах pH 8,2–10,0. При pH ниже 8,2 он бесцветный, а при pH выше 10,0 – красный.

Ход работы. К 10 мл профильтрованного желудочного сока добавить 1–2 капли раствора фенолфталеина и титровать 0,1н раствора NaOH до появления слабо-розового окрашивания, не исчезающего в течение 1 мин. Произвести расчет на 1000 мл желудочного сока.

Количественное определение общей кислотности, общей, свободной и связанной соляной кислоты в одной порции желудочного сока.

Ход работы. Отмерить в колбочки по 10 мл желудочного сока и добавить по 1-2 капли диметиламиноазобензола и фенолфталеина. Титровать 0,1н раствором NaOH до появления оранжевого окрашивания (первая отметка количества израсходованного 0,1н раствора NaOH). Затем продолжить титрования до лимонно-желтого цвета (вторая отметка) и, наконец, до розового окрашивания, не исчезающего в течение 1 мин (третья отметка).

В процессе титрования отсчет ведется от начальной точки!

Первая отметка соответствует количеству свободной соляной кислоты, третья – общей кислотности. Вторая отметка используется для расчета количества общей соляной кислоты. Среднее арифметическое между вторым и третьим пунктом соответствует общей соляной кислоте. Количество связанной соляной кислоты вычисляется как разница между общей и свободной соляной кислотой. Например, при титровании 0,1н раствором едкого натра затрачено титрованного раствора (с начала титрования): до первой отме(оранжевый цвет) – 3,3 мл, до второй (лимонно-желтый цвет) – 4,6, до третьей (розовый цвет) – 5,6 мл. Среднее между второй и третьей отметкой –

(4,6 + 5,6) : 2 = 5,1 мл.

Произвести расчет содержания свободной соляной кислоты, общей соляной кислоты, общей кислотности на 1000 мл желудочного сока по формуле (1).

Этот способ расчета неприменим при наличии молочной кислоты в желудке. Поэтому в пробах желудочного сока, содержащего молочную кислоту, ограничиться вычислением свободной соляной кислоты и общей кислотности.

Полученные данные вносятся в таблицу:

Содержание HCl, ммоль/л

Норма. Показатели кислотности профильтрованного желудочного содержимого взрослого человека после стандартного пробного завтрака составляют:

общая кислотность – 40–60 ммоль/л (новорожденные – 2,8 ммоль/л; дети до года – 4–20 ммоль/л);

свободная HCl – 20–40 ммоль/л (новорожденные – 0,5 ммоль/л);

связанная HCl – 10–20 ммоль/л;

общая HCl – 30–60 ммоль/л.

Клинико-диагностическое значение. При различных заболеваниях желудка кислотность может быть повышенной, пониженной и нулевой. При язвенной болезни желудка или гиперацидном гастрите наблюдается гиперхлоргидрия – увеличение содержания свободной соляной кислоты и общей кислотности. При гипоацидном гастрите или раке желудка отмечается гипохлоргидрия – уменьшение количества свободной соляной кислоты и общей кислотности. При раке желудка, хроническом атрофическом гастрите отмечается полное отсутствие соляной кислоты и значительное снижение общей кислотности – ахлоргидрия. При злокачественном малокровии, раке желудка наблюдается полное отсутствие соляной кислоты и пепсина – ахилия.

Выводы. Записать полученный результат и дать его клинико-диагности­ческую оценку.

Лабораторная работа № 2. Обнаружение патологических компонентов желудочного сока

а) Обнаружение молочной кислоты по реакции Уффельмана.

Принцип метода. При взаимодействии фенолята железа, имеющего фиолетовый цвет, с лактатом образуется лактат железа желто-зеленого цвета.

Ход работы. К 20 каплям раствора фенола добавить 1-2 капли раствора хлорного железа. Получается раствор фенолята железа фиолетового цвета. В пробирку с фенолятом железа прилить по каплям желудочный сок (нормальный и сок, содержащий молочную кислоту).

В присутствии молочной кислоты фиолетовая окраска переходит в желто-зеленую вследствие образования лактата железа. При одновременном присутствии соляной кислоты жидкость обесцвечивается. Это объясняется тем, что сильная соляная кислота полностью разрушает комплекс железа с фенолом, а также вытесняет более слабую молочную кислоту из ее соли; вследствие этого реакция на присутствие молочной кислоты отрицательная.

Клинико-диагностическое значение. Органические кислоты (молочная, уксусная, масляная и др.) имеют обычно микробное происхождение и появляются в желудочном содержимом в результате ахлоргидрии и последующего сбраживания компонентов пищи. Наличие органических кислот в желудочном содержимом натощак часто встречается при атрофических гастритах и раке желудка.

Выводы. Записать полученный результат и дать его клинико-диагности­ческую оценку.

б) Бензидиновая проба на кровь.

Принцип метода. Гемоглобин обладает каталазной активностью и разлагает пероксид водорода с образованием молекулярного кислорода, который окисляет бензидин или другой краситель. При этом происходит изменение окраски с бесцветной на темно-синюю.

Ход работы. В пробирку с 1 мл желудочного сока добавляют 4-5 капель 0,2 %-го спиртового раствора бензидина и 5 капель 1 %-го раствора пероксида водорода. При наличии в желудочном соке крови в результате окисления бензидина развивается синее окрашивание.

Полученные данные вносятся в таблицу:

Пробы желудочного сока

Лактат (молочная к-та)

Примечание – Если результаты какой-либо работы являются отрицательными, то в соответствующей графе ставится прочерк.

Клинико-диагностическое значение. Кровь появляется в желудочном содержимом при изъязвлении стенок желудка при язвенной болезни, эрозивном, язвенном гастрите, ожогах слизистой желудка и раке желудка.

Выводы. Записать полученный результат и дать его клинико-диагности­ческую оценку.

Кухта, В.К и др. Биологическая химия: учебник / В.К. Кухта, Т.С. Морозкина, Э.И. Олецкий, А.Д. Таганович ; под ред. А.Д. Тагановича . – Минск: Асар, М.: Издательство БИНОМ, 2008. – С. 261-277.

Биохимия: Учебник для вузов / Под ред. Е.С. Северина . – 4-е изд., испр. – М.: ГЭОТАР-Медиа, 2006. – С. 458-469.

Филиппович, Ю. Б. Основы биохимии. – 4-е изд. – М.: Агар, 1999. – С. 261-265.

Николаев, А.Я. Биологическая химия. М.: Медицинское информационное агентство, 2004. – С. 330-335.

Марри Р. и др. Биохимия человека: в 2-х т.: Пер. с англ., М.: Мир, 2004. – Т.1: С. 299-305, Т.2. С. 274-298.

Березов, Т. Т. Биологическая химия / Т.Т. Березов, Б.Ф. Коровкин. – М.: Медицина, 1998. – С. 409-429.

Элементы патологической физиологии и биохимии / Под ред. Ашмарина И. П. М.: Изд-во МГУ, 1992. С. 57–69.

Белки-2. Тканевый обмен аминокислот.
Обезвреживание продуктов обмена

Цель занятия: сформировать представления об основных путях метаболизма свободных аминокислот в тканях. Изучить механизмы и значение реакций детоксикации аммиака в норме и при патологии. Освоить методы определения концентрации мочевины в биологических жидкостях.

Исходный уровень знаний и навыков

Студент должен знать:

. Строение, классификацию и свойства основных классов аминокислот.

. ЦТК, реакции, ферменты, механизмы регуляции.

. Механизм микросомального окисления.

. Строение витамина В 6 и его коферментные формы.

Студент должен уметь:

Проводить исследование на колориметре.

Основные реакции обмена аминокислот:

Реакции на радикал:

а) гидроксилирование (про, лиз, фен). Механизм микросомального окисления (роль аскорбата, NADPH, цитохрома P450 и др.), примеры, биологическое значение;

б) разрыв (механизм, биологическое значение);

в) метилирование и др.

Реакции на карбоксильную группу:

а) декарбоксилирование (на примере гис, тир, трп, глу) – механизм, ферменты, биологическая роль;

б) восстановление – ферменты, биологическая роль.

Реакции на аминогруппу:

а) виды дезаминирования (окислительное, восстановительное, гидролитическое, внутримолекулярное), их биологическое значение;

б) прямое окислительное дезаминирование – механизм, ферменты, коферменты, биологическое значение;

в) реакции переаминирования – ферменты, коферменты, биологическое значение;

г) непрямое окислительное дезаминирование – механизм, ферменты, коферменты, биологическое значение.

Аммиак, пути его образования и механизмы токсичности.

Пути детоксикации аммиака:

а) восстановительное аминирование;

б) образование амидов (глн и асн);

в) биосинтез мочевины, реакции, ферменты, локализация, биологическая роль цикла синтеза мочевины (ЦСМ). Энергетическая емкость ЦСМ. Связь ЦСМ с ЦТК и обменом аминокислот. Роль ЦСМ в регуляции кислотно-основного состояния (КОС).

Читайте также:  Все витамины для беременных список продуктов

Энзимопатии ЦСМ, виды и основные клинические проявления.

Пути вступления аминокислот в ЦТК (схема). Глико- и кетогенные аминокислоты.

1. Через какие интермедиаты в ЦТК вступает тирозин?

а) оксалоацетат; б) малат; в) фумарат; г) α-кетоглутарат; д) ацетилкоэнзим А.

2. К гликогенным аминокислотам относятся:

а) гис; б) мет; в) сер; г) лей; д) трп?

3.Для каких аминокислот характерны реакции гидроксилирования?

а) лиз; б) тир; в) гли; г) тре; д) про.

4. Виды декарбоксилирования:

а) альфа; б) бета; в) гамма; г) лямбда; д) омега?

5. Коферментами прямого окислительного дезаминирования являются:

а) FAD; б) NAD + ; в) NADP + ; г) коэнзим Q; д) коэнзим А?

6. Какая аминокислота подвергается преимущественно внутримолекулярному дезаминированию?

а) ала; б) вал; в) тир; г) гис; д) орн.

7. В каких превращениях происходит образование аммиака в клетках?

а) H 2 + N 2 =; б) глу → α-кетоглутарат; в) глу → глн; г) глн → глу; д) АМФ → ИМФ.

8. Ферменты каких классов принимают участие в ЦСМ?

а) оксидоредуктазы; б) трансферазы; в) гидролазы; г) лиазы; д) изомеразы.

9. Атомы азота мочевины происходят из:

а) аммиака и аспартата; б) аммиака и аспарагина; в) аммиака и глутамата; г) глутамата и глутамина; д) глутамина и аспарагина?

10. Какие энзимопатии сопровождаются гипераммонемией?

а) цитруллинемия; б) гистидинемия; в) арининосукцинатурия; г) дефект карбамоилфосфатсинтетазы I; д) фруктозурия.

Лабораторная работа № 1. Количественное определение концентрации мочевины в сыворотке крови уреазным фенол/гипохлоритным методом.

Принцип метода. Мочевина под действием уреазы гидролизуется с обращением карбоната аммония. Ионы аммония реагируют в присутствии нитропруссида с фенолом и гипохлоритом, образуя окрашенный комплекс. Интенсивность окраски пропорциональна концентрации мочевины в пробе.

Ход работы . Осуществляется в соответствии с таблицей 1.

Опытная проба, мл

Калибровочная проба, мл

Реакционную смесь тщательно перемешивают и инкубируют не менее 5 минут при комнатной температуре (не ниже 20°C) . После окончания инкубации во обе пробы вносят по 1 мл гипохлорита, инкубируют в термостате при 37°С в течение 15 минут; затем пробы охлаждают до комнатной температуры и измеряют оптическую плотность опытной и калибровочной проб против дистилированной воды в кюветах с длиной оптического пути 5 мм при длине волны 540 нм на фотоколориметре.

Примечание: Окраска проб стабильна в течение 5 — 8 часов.

Расчет концентрации мочевины в сыворотке крови проводят по формуле:

С = Е оп / Е кал • 30 [мг/100мл]

C = Е оп / Е кал • 5,0 [ммоль/л]

где: E оп. – экстинкция опытной пробы;

E кал. – экстинкции калибровочной пробы.

Норма. 10-50 мг/100 мл (1,7-8,3 ммоль/л)

Клинико-диагностическое значение. На долю мочевины приходится половина остаточного азота крови, именно та часть, которая в наибольшей степени задерживается в крови при нарушении функции почек. При патологии почек уровень мочевины в крови нарастает гораздо быстрее, чем остальных компонентов остаточного азота. К тому же определение уровня мочевины в крови технически проще осуществимо, чем остаточного азота. В связи с этим уровень ее в крови, прежде всего, характеризует экскреторную функцию почек.

Повышение содержания мочевины в крови отмечается у больных с другими патологическими состояниями – рефлекторной анурией, обструкцией (камни и злокачественные новообразования) в мочевыводящих путях, усиленным распадом белка (острая желтая атрофия печени, тяжелые инфекционные заболевания, обширные травмы и др.).

Верхняя граница содержания мочевины в сыворотке крови зависит от характера питания. При приеме белков в сутки свыше 2,5 г/кг веса уровень мочевины может возрастать до 10 ммоль/л.

Снижение уровня мочевины в крови наблюдается редко и отмечается обычно при дефиците белка в рационе. При беременности также возможно снижение концентрации мочевины в крови ниже 3,33 ммоль/л.

Выводы. Записать полученный результат и дать его клинико-диагностическую оценку.

Лабораторная работа № 2. Количественное определение мочевины в сыворотке крови и в моче диацетилмонооксимным методом

Принцип метода. Мочевина образует с диацетилмонооксимом в сильнокислой среде в присутствии тиосемикарбазида и ионов трехвалентного железа комплекс красного цвета, интенсивность окраски которого пропорциональна содержанию мочевины.

Меры предосторожности по ходу работы. Обращаться с осторожностью, т. к. реактив 2 содержит ядовитое вещество тиосемикарбазид, а в рабочем растворе содержится серная кислота.

Примечание: в настоящее время данный метод, как более токсичный и опасный, вытесняется уреазным фенол/гипохлоритным методом.

Ход работы . Осуществляется в соответствии с таблицей 1.

Сыворотка или разведенная моча

В пробирку отмеривают 0,01 мл сыворотки крови или разведенной мочи, добавляют 2 мл рабочего раствора (реактива 2), содержащего смесь раствор диацетилмонооксима, тиосемикарбазида и хлорида железа в кислой среде.

Эталонную пробу обрабатывают точно так же, используя вместо 0,01 мл сыворотки крови 0,01 мл эталонного раствора мочевины (реактива 1).

Содержимое пробирок тщательно перемешивают, пробирки закрывают алюминиевой фольгой и помещают точно (!) на 10 мин в кипящую баню.

Затем пробирки быстро охлаждают в токе холодной воды и не позднее (!) 15 мин после охлаждения, измеряют оптическую плотность пробы (A 1 ) и эталона (A 2 ) против контрольного раствора (реактив 2) в кювете 10 мм при длине волны 490–540 нм (зеленый светофильтр).

Мочу перед анализом разводят дистиллированной водой в соотношении 1 : 100, а результат умножается на коэффициент разведения.

[Мочевина] = 16,65(А 1 /А 2 )(моль/л).

Норма. 2,5–8,3 ммоль/л.

Выводы. Записать полученный результат и дать его клинико-диагности­ческую оценку.

Предупреждение. При содержании мочевины в пробе свыше 23 ммоль/л пробу следует развести дистиллированной водой, анализ провести повторно, а полученный результат умножить на коэффициент разведения.

При определении мочевины в гемолитических или липемических сыворотках пробу необходимо депротеинировать 5 %-ным раствором ТХУ. Для этого в пробирке смешивают 0,1 мл пробы с 1 мл раствора ТХУ и центрифугируют. Точно так же разбавляют и эталонный раствор мочевины. Для собственно анализа отмеривают 0,1 мл надосадочной жидкости. Далее определение проводят как при анализе без депротеинирования. Таким же способом можно анализировать цельную кровь.

Кухта, В.К и др. Биологическая химия: учебник / В.К. Кухта, Т.С. Морозкина, Э.И. Олецкий, А.Д. Таганович ; под ред. А.Д. Тагановича . – Минск: Асар, М.: Издательство БИНОМ, 2008. – С. 277-287.

Биохимия: Учебник для вузов / Под ред. Е.С. Северина . – 4-е изд., испр. – М.: ГЭОТАР-Медиа, 2006. – С. 469-491.

Филиппович, Ю. Б. Основы биохимии. – 4-е изд. – М.: Агар, 1999. – С. 265-278

Николаев, А.Я. Биологическая химия. М.: Медицинское информационное агентство, 2004. – С. 335-351.

Марри Р. и др. Биохимия человека: в 2-х т.: Пер. с англ., М.: Мир, 2004. – Т.1: С. 306-316.

Березов, Т. Т. Биологическая химия / Т.Т. Березов, Б.Ф. Коровкин. – М.: Медицина, 1998. – С. 428–451.

Ленинджер А. Основы биохимии. М.: Мир, 1985. Т. 2. С. 571–599.

Белки-3. Особенности обмена отдельных
аминокислот в норме и при патологии

Цель занятия: сформировать представления об особенностях обмена отдельных аминокислот (АК) в норме и при патологии. Дать биохимическое обоснование практического применения аминокислот в медицине. Освоить методику определения активности трансаминаз в сыворотке крови.

Исходный уровень знаний и навыков

Студент должен знать:

. Строение, классификацию и свойства основных классов АК.

. ЦТК, реакции, ферменты, механизмы регуляции, его взаимосвязь с обменом АК, углеводов, липидов и циклом синтеза мочевины.

. Механизмы митохондриального и микросомального окисления.

. Энзимопатии (общая характеристика).

. Энзимодиагностика (принципы, объекты, цель и задачи).

Студент должен уметь:

. Проводить исследование на колориметре.

ЦТК (реакции, ферменты, коферменты, механизмы регуляции, биологическая роль). Пути вступления отдельных АК в ЦТК (глико- и кетогенные АК).

Особенности обмена отдельных АК – биосинтез и распад, участие в ГНГ или кетогенезе, применение в медицине.

ала – основные пути метаболизма, регуляторная роль.

гли, сер – механизм взаимопревращений, роль ТГФК в обмене, участие в биосинтезе фосфолипидов, этаноламина, холина, пуринов, порфиринов, глутатиона, креатина, гиппуровой кислоты, желчных кислот. Нарушение обмена гли – гиперглицинемия, оксалоз, их основные клинические проявления.

глу – прямое и непрямое окислительное дезаминирование, трансаминирование, ферменты и биологическое значение. Биологическое значение глутаматдегидрогеназы.

Адаптивная роль глу: антигипоксическая – образование γ‑аминомасляной кислоты (ГАМК), γ-оксимасляной кислоты (ГОМК) и янтарной кислоты, энергетический “выход” окисления глу, антитоксическая – обезвреживание аммиака, связывание тяжелых металлов и др., антиоксидантная – синтез глутатиона. биосинтез про, пуриновых оснований. Роль глу в интеграции углеводного, липидного и азотистого обменов. Показания к применению глу в медицинской практике.

асп – основные метаболические превращения: трансаминирование, амидирование (обезвреживание аммиака), α-декарбоксилирование (биологическая роль b-аланина), биосинтез пуриновых и пиримидиновых оснований, биосинтез мочевины, участие в цикле пуриновых нуклеотидов. Показания к применению асп в медицинской практике.

про – биосинтез, распад, механизм образования о-про, реакция, ферменты, роль микросомального окисления, аскорбата и др. Клинико-диагностическое значение определения содержания про и о-про в крови и моче. Нарушение обмена про – гиперпролинемия, основные клинические проявления.

гис – биосинтез и основные пути обмена, их биологическая роль: образование гистамина, дипептидов ансерина, карнозина. Использование гис как радиопротектора и антиоксиданта. Нарушение обмена гис – гипергистидинемия, основные клинические проявления.

арг – биосинтез и основные пути обмена, их биологическое значение: адаптивная роль системы арг – аргиназа – мочевина.

цис – механизм биосинтеза из мет. Антитоксическая, антиоксидантная и радиопротекторная роль: биосинтез цистина, таурина, ФАФС, глутатиона и др. Нарушение обмена цис – цистиноз, его основные клинические проявления.

мет – основные пути метаболизма: образование S -аденозилметиони­на ( SAM ), витамина U ( S -метилметионина), реакции трансметилирования – синтез холина, адреналина, креатинина, реакции детоксикации и др. Нарушение обмена мет – гомоцистинурия, цистатионурия, основные клинические проявления.

фен и тир – основные пути метаболизма: биосинтез катехоламинов, тиреоидных гормонов, меланина и др. Нарушение обмена фен, тир – фенилкетонурия, альбинизм, алкаптонурия, тирозиноз, их основные клинические проявления.

трп – основные пути обмена: кинурениновый, образование триптамина и серотонина. Нарушения обмена трп – синдром Хартнупа, его основные клинические проявления.

вал, лей, иле – особенности обмена, регуляторная роль этих аминокислот. Нарушения обмена – болезнь кленового сиропа, ее основные клинические проявления.

Интеграция углеводного, липидного и белкового обменов, механизм образования общих метаболитов.

1. При декарбоксилировании какой аминокислоты образуется β-аланин?

а) α-аланина; б) глутамина; в) метионина; г) фенилаланина; д) аспартата.

2. В образовании каких веществ принимает участие серин?

а) этаноламина; б) этанола; в) холина; г) пирувата; д) глюкозы.

3. Активная форма какого витамина выступает коферментом взаимопревращения глицина и серина?

а) В 1 ; б) В 2 ; в) В 3 ; г) В 6 ; д) В 9 .

4. Укажите промежуточные метаболиты превращения глутамата в сукцинат:

а) α-кетоглутарат; б) γ-аминобутират; в) γ-оксибутират; г) янтарный полуальдегид; д) сукцинилкоэнзим А?

5. В синтезе каких веществ принимает участие гистидин?

а) ансерина; б) гистамина; в) триптофана; г) карнозина; д) карнитина.

6. C каким субстратом взаимодействует NO-синтаза?

а) аланином; б) аргинином; в) NO; г) цитруллином; д) орнитином.

7. В процессе метаболизма триптофана образуются:

а) аланин; б) тиамин; в) серотонин; г) секретин; д) кинуренин?

8. Для метилирования каких соединений используется SAM?

а) креатина; б) гуанидиноацетата; в) норадреналина; г) метионина; д) фосфатидилэтаноламина.

9. Первой стадией катаболизма АКРР является:

а) декарбоксилирование; б) фосфорилирование; в) трансаминирование; г) дезаминирование; д) гидроксилирование?

10. Сколько молекул АТФ можно синтезировать по результатам превращения валина в щавелевоуксусную кислоту?

а) 10; б) 12; в) 15; г) 16; д) 20.

Лабораторная работа № 1. Определение активности АСТ (аспартат­аминотрансферазы) в сыворотке крови по Райтману и Френкелю

Принцип метода. В результате переаминирования, происходящего под действием АСТ, образуется щавелевоуксусная кислота. Щавелевоуксусная кислота спонтанно декарбоксилируется в пировиноградную. При добавлении 2,4-динитрофенилгидразина в щелочной среде образуется гидразон пировиноградной кислоты красно-коричневого цвета, интенсивность окраски которого определяется колориметрически (см. уравнения).

Ход работы . Пробирку с 0,25 мл субстратно-буферной смеси нагревают в термостате при 37°C в течение 5 мин, добавляют 0,05 мл сыворотки крови и инкубируют 60 мин в термостате при этой же температуре.

Добавляют 0,25 мл раствора 2,4-динитрофенилгидразина и выдерживают в течение 20 мин при комнатной температуре. Затем добавляют еще 2,5 мл NaOH, перемешивают и оставляют еще на 10 мин при комнатной температуре.

Измеряют на фотометре экстинкцию опытной пробы при длине волны 500–560 нм (зеленый светофильтр) в кювете с толщиной слоя 10 мм. В качестве контрольной пробы используется дистиллированная вода.

Расчет. Производят по калибровочному графику.

Норма. АСТ – 0,1–0,45 ммоль/ч.л (пирувата на 1 л сыворотки крови за 1 час инкубации при 37°С).

Клинико-диагностическое значение. Определение активности АЛТ и АСТ широко используется в ранней дифференциальной диагностике различных заболеваний. Оба фермента высокоактивны в различных тканях. Однако наибольшая активность АЛТ приходится на печень, а АСТ – на миокард. В связи с высокой информативностью определение активности АЛТ используется для ранней диагностики болезни Боткина (до появления желтухи и первых симптомов болезни – недомогания, слабости и т. д.), а также ее безжелтушных форм. Высокая активность фермента в крови поддерживается первые 10–15 дней, а затем постепенно снижается. Степень увеличения активности АЛТ коррелирует с тяжестью болезни.

Читайте также:  Витамины two per day capsules как принимать

АСТ более специфична для миокарда, поэтому используется для ранней дифференциальной диагностики инфаркта миокарда. Причем увеличение активности отмечается через 24–36 часов и снижается на 3–7-е сутки.

Выводы. Записать полученный результат и дать его клинико-диагностическую оценку.

Лабораторная работа № 2. Определение активности АЛТ (аланинаминотрансферазы) в сыворотке и плазме крови ферментативным методом (УФ-области)

Принцип метода. Основан на сопряжении двух ферментативных реакций (АЛТ и ЛДГ) – трансаминирования и последующего NADH-зависимого восстановлении пирувата, образующегося в процессе трансаминирования.

L-ала +  -кетоглутарат  пируват + L-глу;

пируват + NADH+H +  L-лактат + NAD + .

Ход реакции регистрируют по убыли восстановленной формы кофермента – NADH+Н + , имеющего максимум поглощения при 340 нм.

Ход работы. Активность АЛТ в сыворотке крови определяют в 2 этапа.

I этап. В пробирку вносят 1 мл раствора № 1 (смесь ЛДГ, NADH+Н + буфер-субстрата, пиридоксаль-фосфата) и 0,1 мл сыворотки крови, перемешивают и термостатируют 5 мин при 37 °C.

II этап. Содержимое пробирки переливают в кювету, предварительно нагретую до 37 °C, и добавляют 0,1 мл раствора № 2 (-кетоглутарат).

Измеряют оптическую плотность при длине волны 340 нм, ширине кюветы 10 мм, в интервале 3 мин.

Расчет. Вычисляют изменение экстинкции за 1 мин (А/t) в мккат/л, а также каталитическую концентрацию (активность АЛТ) по формуле

С =  A /  t  31,75 .

Норма. Активность АЛТ сыворотки крови равна 0,15–0,96 мккат/л.

Выводы. Записать полученный результат и дать его клинико-диагности­ческую оценку.

Кухта, В.К и др. Биологическая химия: учебник / В.К. Кухта, Т.С. Морозкина, Э.И. Олецкий, А.Д. Таганович ; под ред. А.Д. Тагановича . – Минск: Асар, М.: Издательство БИНОМ, 2008. – С. 288-303.

Биохимия: Учебник для вузов / Под ред. Е.С. Северина . – 4-е изд., испр. – М.: ГЭОТАР-Медиа, 2006. – С. 491-520.

Николаев, А.Я. Биологическая химия. М.: Медицинское информационное агентство, 2004. – С. 351-365.

Марри Р. и др. Биохимия человека: в 2-х т.: Пер. с англ., М.: Мир, 2004. – Т.1: С. 317-355.

Березов, Т. Т. Биологическая химия / Т.Т. Березов, Б.Ф. Коровкин. – М.: Медицина, 1998. – С. 451–468.

Ленинджер А. Основы биохимии. М.: Мир, 1985. Т. 2. С. 653–681.

Белки-4. Нуклеопротеиды. Структура и функции информационных макромолекул

Цель занятия: сформировать представления о структуре, метаболизме и функциях азотистых оснований, нуклеотидов и нуклеиновых кислот. Освоить качественные реакции на продукты гидролиза нуклеопротеидов.

Исходный уровень знаний и навыков

Студент должен знать:

Строение, свойства и функции азотистых оснований и нуклеотидов.

Правила Э. Чаргаффа.

Структуру, классификацию, свойства и функции нуклеиновых кислот.

Молекулярные механизмы переваривания и всасывания пищи в желудочно–кишечном тракте (ЖКТ).

Энзимопатии (общая характеристика).

Студент должен уметь:

Проводить качественные реакции на белки и углеводы.

Переваривание и всасывание нуклеопротеидов в ЖКТ. Характеристика и функции “ядерных” белков.

Мононуклеотиды как структурные компоненты нуклеиновых кислот (НК), их основные функции:

переносчики энергии – АТФ, ГТФ.

коферменты – NAD, NADP, FAD, FMN.

участие в метаболизме углеводов (УДФ-глюкоза и др.) и липидов (ЦДФ-холин и др.).

мессенджеры гормональных и др. сигналов – цАМФ, цГМФ.

Метаболизм (синтез и распад) пуринов и пиримидинов. Реакции, ферменты, регуляция.

Биосинтез АМФ и ГМФ. Реакции, ферменты, регуляция.

Структура и функции НК. Особенности строения и роль различных видов ДНК (ядерная, митохондриальная, сателлитная). Особенности структуры ДНК вирусов и фагов. Полиморфизм вторичной структуры ДНК – А-, В- и Z-формы.

Особенности строения и роль различных видов РНК – информационной, рибосомальной, транспортной, вирусной. Роль минорных оснований в структуре НК. Коэффициент видовой специфичности.

Механизмы хранения и передачи наследственной информации – репарация, репликация (строение репликативной вилки), транскрипция, трансляция, характеристика основных ферментов и кофакторов.

Этапы биосинтеза ДНК – инициация, элонгация, терминация, роль ДНК-полимераз.

Биосинтез РНК, его регуляция, роль РНК-полимераз. Процессинг РНК, его биологическое значение. Альтернативный сплайсинг.

Строение иммуноглобулинов (Ig). Характеристика основных классов Ig – IgA, IgD, IgE, IgG, IgM. Рекомбинация генов Ig как причина их разнообразия.

Патология обмена азотистых оснований и НК. Нарушения процессов репарации ДНК и их последствия. Причины возникновения и основные клинические проявления оротацидурии, ксантинурии, синдрома Леша–Нихана и подагры.

1. Для биологического кода характерны следующие свойства:

каждый кодон соответствует одной АК;

каждой АК соответствует только один кодон;

кодон мРНК считываются в направлении от 5´- к 3´-концу;

смысл кодонов одинаков для всех живых организмов на Земле?

2. В ходе посттрансляционной достройки полипептидные цепи могут:

а) фосфорилироваться, б) образовывать олигомеры, в) подвергаться частичному протеолизу, г) гидроксилироваться, д) соединяться с простетическими группами?

3. Активация аминокислот происходит с помощью фермента:

а) лигаза; б) фосфатаза; в) РНК-аза; г) пептидаза; д) синтетаза; е) лиазы?

4. Аминокислоты в белках ковалентно связаны:

а) силами Ван-дер-Ваальса; б) пептидными связями; в) гидрофобными связями; г) фосфоэфирными связями; д) водородными связями; е) координационными связями?

5. Укажите основной фермент, ответственный за реализацию информации генома ретровирусов:

а) ДНК-лигаза; б) ДНК-полимераза; в) обратная транскриптаза (ревертаза); г) РНК-полимеразы; д) АРС-аза?

6. Каждая рибосома в полисоме:

движется по мРНК в направлении 3`5`;

движется по мРНК в направлении 5`3`;

синтезирует многие полипептидные цепи;

синтезирует только одну полипептидную цепь;

диссоциирует по окончании синтеза?

7. Точечная мутация мРНК будет наиболее вероятной причиной:

а) распада мРНК; б) инактивации рибосом; в) изменения первичной структуры белка; г) незавершенной транскрипции; д) подавления сплайсинга?

8. Белки синтезируются:

а) от N-конца к С-концу; б) от С-конца к N-концу; в) с матрицы рРНК; г) с матрицы иРНК; д) от 3’-конца к 5’-концу РНК; е) от 5’-конца к 3’-концу РНК?

Лабораторная работа № 1. Определение концентрации мочевой кислоты в биологических жидкостях энзиматическим колориметрическим методом без депротеинизации

Принцип метода. Содержащаяся в пробе мочевая кислота окисляется под действием фермента уриказы с образованием эквимолярного количества перекиси водорода. В присутствии пероксидазы перекись водорода окисляет хромогены с образованием окрашенного продукта. Интенсивность окраски пропорциональна концентрации мочевой кислоты в пробе.

мочевая кислота + 2Н 2 О + О 2 —→ аллантоин + СО 2 + Н 2 О 2

2Н 2 О 2 + ДХФС 1 + ААП 2 ——→ (хинониминовый окрашенный продукт) + 4Н 2 О

Ход работы. Осуществляется в соответствии с таблицей 1 .

Опытная проба, мл

Калибровочная проба, мл

Содержимое опытной пробы перемешивают и инкубируют в термостате при температуре 20-25C не менее 10 минут. Затем опытную пробу фотометрируют при длине волны 490 нм в кювете с толщиной поглощающего слоя 0,5 см против дистиллированной воды.

Примечание : Окраска стабильна не менее 40 минут после окончания инкубации.

Расчёт производят по формуле:

С = Е пр / Е кал • 357 (мкмоль/л)

С = Е пр / Е кал • 6 мг/100 мл

где Е пр – экстинкция опытной пробы,

Е кал – экстинкция калибровочной пробы,

357 или 6 – концентрация мочевой кислоты в калибраторе в мкмоль/л или мг/100мл

Норма: женщины – 142-339 мкмоль/л (2,4-5,7 мг/100 мл),

мужчины – 202-416 мкмоль/л (3,4-7,0 мг/100 мл.

Увеличение уровня мочевой кислоты в крови (гиперурикемия) отмечается при патологических состояниях, связанных с усилением распада клеток (в особенности содержащих ядра), нарушением выделения мочевой кислоты с мочой, изменением эндокринной регуляции обмена пуриновых оснований (вторичные гиперурикемии), а также при подагре – заболевании, обусловленном первичным (вызванным врожденными ферментативными сдвигами метаболизма) нарушением обмена этого метаболита.

Гипоурикемия (уменьшение концентрации этого метаболита) наблюдается при гепатоцеребральной дистрофии (болезни Вильсона-Коновалова), некоторых злокачественных новообразованиях (лимфогранулематозе, бронхогенном раке), у больных после приема пиперазина, атофана, салицилатов и кортикотропина (АКТГ).

Выводы. Записать полученный результат и дать его клинико-диагностическую оценку.

Лабораторная работа Качественные реакции на продукты гидролиза нуклеопротеидов (белки, углеводы, пуриновые основания, фосфат).

Принцип метода. Основан на проведении специфических реакций на компоненты нуклеопротеидов дрожжей, получаемых путем их гидролиза: полипептиды, пуриновые основания, углеводы и фосфат.

ВНИМАНИЕ! Соблюдать меры безопасности при работе с концентрированной серной кислотой и кипячением на водяной бане.

а) Биуретовая реакция на полипептиды.

К 5 каплям гидролизата добавляют 10 капель 10 %-го раствора NaOH, затем 2 капли 1 %-го раствора CuSO 4 . Образуется комплекс фиолетового цвета.

б) Серебряная проба на пуриновые основания.

К 10 каплям гидролизата приливают 10 капель концентрированного (!) аммиака, затем добавляют 10 капель 2 %-го аммиачного раствора нитрата серебра. При стоянии через 3–5 мин образуется светло-коричневый осадок серебряных солей пуриновых оснований (см. уравнение).

в) Качественная реакция на пентозу (Молиша).

К 5 каплям гидролизата добавляют 3 капли 1 %-го спиртового раствора тимола, перемешивают и по стенке пробирки осторожно наслаивают 20 капель концентрированной (!) серной кислоты. При встряхивании на дне пробирки образуется продукт конденсации фурфурола с тимолом красного цвета (см. уравнение).

г) Качественная реакция на углеводы.

К 5 каплям гидролизата дрожжей приливают 3 капли 0,2 %-го спиртового раствора альфа-нафтола и 20 капель концентрированной (!) серной кислоты. Наблюдают появление розово-фиолетового окрашивания.

д) Реакция на дезоксирибозу и рибозу.

К 5 каплям гидролизата дрожжей добавляют 20 капель 1%-го раствора дифениламина и кипятят на водяной бане в течение 15 мин, при этом образуется сине-зеленое окрашивание, поскольку дифениламин с дезоксирибозой дает синее окрашивание, а с рибозой – зеленое.

е) Молибденовая проба на фосфорную кислоту.

К 10 каплям гидролизата дрожжей приливают 20 капель молибденового реактива и кипятят несколько минут на открытом огне спиртовки. При этом жидкость окрашивается в желтый цвет. Пробирку сразу охлаждают в струе холодной воды. На дне пробирки появляется кристаллический лимонно-желтый осадок фосфорномолибденовокислого аммония.

Порядок оформления работы. Результаты лабораторной работы записывают в тетрадь в виде таблицы:

Чем обусловлена реакция?

Выводы. Записать полученный результат и дать его клинико-диагности­ческую оценку.

Кухта, В.К и др. Биологическая химия: учебник / В.К. Кухта, Т.С. Морозкина, Э.И. Олецкий, А.Д. Таганович ; под ред. А.Д. Тагановича . – Минск: Асар, М.: Издательство БИНОМ, 2008. – С. 307-338, 344-386.

Биохимия: Учебник для вузов / Под ред. Е.С. Северина . – 4-е изд., испр. – М.: ГЭОТАР-Медиа, 2006. – С. 140-170, 185-226, 521-544.

Филиппович, Ю. Б. Основы биохимии. – 4-е изд. – М.: Агар, 1999. – С. 278-303

Николаев, А.Я. Биологическая химия. М.: Медицинское информационное агентство, 2004. – С.

Марри Р. и др. Биохимия человека: в 2-х т.: Пер. с англ., М.: Мир, 2004. – Т.1: С.

Березов, Т. Т. Биологическая химия / Т.Т. Березов, Б.Ф. Коровкин. – М.: Медицина, 1998. – С. 96–113, 469–503.

Албертс Б. и др. Молекулярная биология клетки. М.: Мир, 1994. Т. 2. С. 93–126.

Ленинджер А. Основы биохимии. М.: Мир, 1985. Т. 2. С. 665–674

Белки-5. Биосинтез белка. Регуляция биосинтеза.
Патология белкового обмена

Цель занятия: сформировать представления об этапах биосинтеза белка, механизмах его регуляции и молекулярных аспектах основных нарушений азотистого обмена. Освоить рефрактометрический метод определения концентрации белка в сыворотке крови.

Исходный уровень знаний и навыков

Студент должен знать:

Строение, классификацию и свойства основных классов нуклеиновых кислот.

Механизмы регуляции активности ферментов.

Структуру и функцию иммуноглобулинов.

Энзимопатии (общая характеристика).

Студент должен уметь:

1.Проводить исследование на рефрактометре.

Принципиальное отличие биосинтеза белка от биосинтеза других молекул. Общая схема биосинтеза белка – необходимые предпосылки:

информационный поток – схема передачи информации. Репликация и транскрипция ДНК – ферменты, механизм. Обратная транскрипция, роль ревертаз. Процессинг и сплайсинг иРНК. Характеристика генетического кода, кодон, антикодон;

пластический поток – механизм активации аминокислот, строения тРНК, характеристика АРС-аз – кодаз;

энергетический поток. Роль макроэргов АТФ, ГТФ и др. в биосинтезе белка.

Рибосомы – принципы организации, строение, состав. Механизм трансляции – этапы рибосомального цикла:

инициация, факторы инициации. Образование инициаторного комплекса;

элонгация, факторы элонгации;

Виды и механизмы посттрансляционной модификации (процессинга) пробелков:

химическая модификация (виды, примеры);

фолдинг белка в норме и при патологии, роль шаперонов.

Регуляция биосинтеза белка у прокариот (модель Жакоба и Моно).

Особенности регуляции биосинтеза белка у эукариот:

регулящия механизмов транскрипции (модификация гистоновых и негистоновых белков);

регуляция процесинга РНК (альтернативный сплайсинг иРНК);

регуляция транспорта РНК из ядра в цитозоль;

регуляция транспорта и функциональной активности белков.

Патология белкового обмена. Нарушение переваривания и всасывания, последствия ахилии. Белковое голодание, квашиоркор, их последствия и основные проявления. Биосинтез дефектных белков. Первично- и вторично-дефектные белки. Относительно патологические белки. Поврежденные белки.

1. Формирование вторичной структуры ДНК происходит за счет:

а) водородных связей; б) ионных связей; в) сложноэфирных связей; г) гидрофобных взаимодействий; д) ковалентных связей?

2. Выберите различия в строении ДНК и РНК:

а) в составе азотистых оснований; б) в составе нуклеотидов; в) в типе связи между нуклеотидами; г) в первичной структуре; д) во вторичной структуре?

3. Репликация происходит:

а) в ядре клетки б) один раз за время клеточного цикла в) с использованием рибонуклеозидтрифосфата г) при участии репликативного комплекса д) в цитозоле клетки?

4. Выберите ферменты репликации, участвующие в образовании 3´,5´- фосфодиэфирной связи:

а) ДНК-полимераза δ; б) ДНК-лигаза; в) ДНК- полимераза α; г) ДНК-хеликаза; д) ДНК- полимераза β?

5 Активность РНК-полимеразы регулируют:

а) ТАТА-фактор; б) Факторы инициации; в) SSB-белки; г) Фактор элонгации; д) мяРНК?

Читайте также:  Зеленый горошек какие витамины содержатся

6. Удлиняется непрерывно по ходу раскручивания репликатиной вилки:

а) лидирующая цепь; б) отстающая цепь; в) обе; г) ни одна?

7. В состав нуклеозида входит:

а) азотистое основание б) азотистое основание и пентоза в) азотистое основание пентоза и остаток фосфорной кислоты

8. Нуклеотиды расщепляются ферментами:

а) нуклеазами; б) нуклеотидазами; в) нуклеозидазами; г) нуклеозидфосфорилазами.

Лабораторная работа. Определение общего белка сыворотки крови рефрактометрическим методом

Принцип метода. В основе рефрактометрии лежит различная преломляющая способность жидких сред, количественно выражаемая коэффициентом преломления (отношение синуса угла падения () к синусу угла преломления ()

,

который в сыворотке крови обусловлен в основном количеством, качеством растворенного белка и температурой. Влияние других компонентов сыворотки крови на коэффициент преломления значительно меньше. Определение коэффициента преломления проводят с помощью рефрактометров.

Расчет. Определив показатель преломления по таблице, вычисляют процент содержания белка в сыворотке крови. Для перехода к единицам СИ (г/л) результат следует умножить на 10.

Содержание белка в плазме (сыворотке) крови

Норма. Содержание общего белка в плазме (сыворотке) крови здорового человека составляет 6,5–8,5 %, или 65–85 г/л.

Выводы. Записать полученный результат и дать его клинико-диагностическую оценку.

Кухта, В.К и др. Биологическая химия: учебник / В.К. Кухта, Т.С. Морозкина, Э.И. Олецкий, А.Д. Таганович ; под ред. А.Д. Тагановича . – Минск: Асар, М.: Издательство БИНОМ, 2008. – С. 338-344, 387-418.

Биохимия: Учебник для вузов / Под ред. Е.С. Северина . – 4-е изд., испр. – М.: ГЭОТАР-Медиа, 2006. – С. 170-185.

Филиппович, Ю. Б. Основы биохимии. – 4-е изд. – М.: Агар, 1999. – С. 189-260.

Николаев, А.Я. Биологическая химия. М.: Медицинское информационное агентство, 2004. – С.

Марри Р. и др. Биохимия человека: в 2-х т.: Пер. с англ., М.: Мир, 2004. – Т.1: С.

Березов, Т. Т. Биологическая химия / Т.Т. Березов, Б.Ф. Коровкин. – М.: Медицина, 1998. – С. 509–544.

Албертс Б. и др. Молекулярная биология клетки. М.: Мир, 1994. Т. 2. С. 176–253.

Биохимия витаминов и гормонов

Цель занятия: изучить специфические биохимические функции витаминов, их роль в метаболизме.

Исходный уровень знаний и навыков

Студент должен знать:

Строение и основные свойства водорастворимых (В 1 , В 2 , В 6 , PP, С, Н) и жирорастворимых (A, D, E, K) витаминов.

Строение и механизм действия ферментов.

Строение и механизм действия коферментов.

Механизмы перекисных процессов и антиоксидантной защиты.

Механизмы интеграции обмена углеводов, липидов и белков.

Студент должен уметь:

Проводить качественный анализ на биологически активные вещества.

Общая характеристика и классификация витаминов. История учения о витаминах (работы Л. И. Лунина, К. А. Сосина, Х. Эйкмана, К. Функа, Ф. Г. Гопкинса). Групповая характеристика витаминов. Гиповитаминозы и авитаминозы, их причины (алиментарные, повышенная потребность, парентеральное питание, заболевание ЖКТ, глистные инвазии, применение лекарственных препаратов и антивитаминов, врожденные нарушения обмена витаминов).

Каждый витамин рассматривается по схеме:

Химическая природа и основные свойства (устойчивость к действию света, pH среды, высокой температуре и др.).

Превращения в организме и механизмы активации.

Механизм действия (участие в обмене веществ, физиологические эффекты).

Картина гипо-, авитаминоза и гипервитаминоза и их клинико-лабораторная диагностика.

Источники витаминов и содержание в продуктах питания.

Показания к применению, профилактические и лечебные дозы.

Строение водорастворимых витаминов B 1 (тиамин), B 2 (рибофлавин), PP (никотинамид, ниацин), B 6 (пиридоксин), C (аскорбиновая кислота), H (биотин), пантотеновая кислота, фолиевая кислота, витамин B 12 (кобаламин).

Строение жирорастворимых витаминов А (антиинфекционный, витамин роста), D (антирахитический), их провитаминов и метаболитов, E (антистерильный), K (антигеморрагический).

Витаминоподобные вещества: витамин P (рутин, биофлавоноиды), витамин F (эссенциальные жирные кислоты), витамин B 8 (инозитол), карнитин, липоевая кислота (витамин N), пара-аминобензойная кислота, витамин U (S-метилметионин), холин (витамин B 4 ).

Проведение контроля конечного уровня знаний.

Витамин, наиболее широко применяющийся в комплексной терапии невритов и полиневритов:

а) В 1 ; б) В 6 ; в) С; г) К; д) Е; е) Н?

Витамин, участвующий в образовании никотиновых коферментов:

а) В 1 ; б) В 2 ; в) В 6 ; г) РР; д) Н; е) С?

Тип реакций, в котором принимает участие биотин:

а) карбоксилирование; б) декарбоксилирование; в) трансаминирование; г) окисление; д) восстановление; е) замещения?

Витамин, необходимый для превращения гистидина в гистамин:

а) В 1 ; б) В 2 ; в) В 6 ; г) С; д) РР; е) А?

Витамин, необходимый для превращения пропионил-КоА в метилмалонил-КоА:

а) В 6 ; б) В 12 ; в) С; г) В 1 ; д) В 2 ; е) А?

Второе название рибофлавина:

а) витамин роста; б) антианемический; в) антидерматитный; г) антипеллагрический; д) антигеморрагический; е) антискорбутный?

Витамин Е накапливается:

а) в почках; б) в жировой ткани; в) в мышечной ткани; г) в яичниках; д) в нервной ткани; е) в селезенке?

Выберите неправильное утверждение:

для гипервитаминоза D характерно избыточное поглощение Са 2+ в кишечнике;

витамин К синтезируется микрофлорой кишечника;

одним из сильнейших природных антиоксидантов является витамин Е;

витамин Е входит в состав зрительного пурпура – родопсина;

витамин В 2 участвует в реакциях карбоксилирования?

а) В 2 ; б) В 6 ; в) Н; г) Е; д) С; е) D?

Лабораторная работа № 1. Качественные реакции на витамин B 1

Витамин B 1 состоит из пиримидинового и тиазольного колец. Он получил название тиамина, поскольку содержит серу и азот:

Тиаминпирофосфат, а в некоторых тканях – тиаминтрифосфат (соответственно ТПФ или ТТФ), является коферментной формой тиамина и синтезируется в печени путем прямого переноса фосфата от АТФ:

ТПФ в составе ферментов углеводного обмена участвует в окислитель­ном декарбоксилировании -кетокислот и в транскетолазной реакции. Его недостаток вызывает поражение периферической нервной системы, сердечно-сосудистой системы и желудочно-кишечного тракта. При этом в крови накапливаются пировиноградная кислота и другие -кетокислоты.

Принцип метода. В щелочной среде тиамин окисляется феррицианидом калия в тиохром, обладающий при ультрафиолетовом облучении синей флюоресценцией. Реакция протекает по следующей схеме:

Ход работы . К 1 капле 5 %-го раствора тиамина прибавляют 5–10 капель 10 %-го раствора едкого натра, 1–2 капли 5 %-го раствора феррицианида калия и взбалтывают. Прогрев флюороскоп в течение 10 минут, наблюдают синюю флюоресценцию при облучении раствора ультрафиолетовыми лучами.

Принцип метода . В щелочной среде тиамин с диазореактивом образует сложное комплексное соединение оранжевого цвета.

Ход работы . К диазореактиву, состоящему из 5 капель 1 %-го раствора сульфаниловой кислоты и 5 капель 5 %-го раствора нитрата натрия добавляют 1–2 капли 5 %-го раствора тиамина и затем по стенке, наклонив пробирку, осторожно добавляют 5–7 капель 10 %-го раствора бикарбоната натрия. На границе двух жидкостей появляется кольцо оранжевого цвета.

Выводы по результатам работы.

Лабораторная работа №2. Качественная реакция на витамин B 2

Рибофлавин состоит из изоаллоксазинового ядра и спирта рибитола:

Рибофлавин входит в состав простетической группы флавиновых ферментов (флавопротеидов – FP) в виде коферментов флавинадениндинуклеотида (FAD) и флавинаденинмонодинуклеоитда (FMN). Флавопротеиды катализируют окислительно-восстановительные реакции. Они участвуют в окислении D-аминокислот, -окислении жирных кислот, в работе дыхательных цепей митохондрий и микросом и др. Биологическое действие флавиновых ферментов связано с наличием окислительно-восстановительных свойств изоаллоксазинового кольца.

При недостатке в организме В 2 возникают поражения слизистых в виде хейлита, глоссита и др.

Принцип метода. Окисленная форма витамина В 2 представляет собой желтое флюоресцирующее в ультрафиолетовых лучах вещество. Реакция на витамин В 2 основана на способности его легко восстанавливаться, при этом раствор витамина В 2 , обладающий желтой окраской, приобретает сначала розовый цвет за счет образования промежуточных соединений, а затем обесцвечивается, так как восстановленная форма витамина В 2 бесцветна.

Ход работы . В пробирку наливают 10 капель раствора витамина В 2 , добавляют 5 капель концентрированной HCl, опускают зернышко металличес­кого цинка. Начинается выделение пузырьков водорода, восстанавливающего рибофлавин, жидкость при этом постепенно розовеет и обесцвечивается. Сравнивают обе формы витамина В 2 по флюоресценции, поместив каждую пробирку под освещение флюороскопа.

Выводы по результатам работы.

Лабораторная работа №3. Качественная реакция на витамин В 6

Группа витамина В 6 : пиридоксол, пиридоксаль, пиридоксамин – являются производными 3-оксипиридина, носят общее название пиридоксина и обладают активностью витамина В 6 .

В организме эти соединения подвергаются фосфорилированию при участии АТФ с образованием коферментов фосфопиридоксаля, фосфопиридоксамина, которые входят в состав ферментов, участвующих в белковом обмене, в реакциях трансаминирования, декарбоксилирования аминокислот, десульфинирования, дегидратирования аминокислот, в образовании витамина PP из триптофана и в некоторых других реакциях.

При недостатке витамина В 6 у животных прежде всего нарушается обмен белков, у человека недостаточность этого витамина встречается редко.

Принцип метода. Витамин В 6 при взаимодействии с раствором хлорного железа образует комплексную соль типа фенолята железа красного цвета.

Ход работы . К 5 каплям 1 %-го раствора витамина В 6 приливают равное количество 1 %-го раствора хлорного железа и перемешивают. Развивается красное окрашивание.

Выводы по результатам работы.

Лабораторная работа №4. Качественная реакция на витамин E

Витамин E существует в виде нескольких изомеров: ,  и -токоферо­лов, которые отличаются друг от друга порядком расположения метильных групп в бензольном кольце. Токоферолы – маслянистые жидкости, растворимые в растительных маслах и жировых растворителях.

Витамин E является мощным антиоксидантом. Некоторые производные витамина E участвуют в окислительно-восстановительных реакциях, связанных с окислительным фосфорилированием.

Витамин E может депонироваться в мышцах и поджелудочной железе.

Принцип метода. Спиртовой раствор -токоферола окисляется хлоридом железа (Fe 3+ ) в токоферилхинон красного цвета:

Ход работы . В сухую пробирку берут 4–5 капель 0,1 %-го спиртового раствора -токоферола, прибавляют 0,5 мл 1 %-го раствора хлорида железа, тщательно перемешивают. Содержимое пробирки приобретает красное окрашивание.

Выводы по результатам работы.

Лабораторная работа № 5. Количественное определение витамина C.

Биологическая роль аскорбиновой кислоты в организме исключительно важна и многообразна. Она участвует в окислительно-восстановительных процессах и связана с системой глутатиона.

Аскорбиновая кислота участвует в синтезе стероидных гормонов в коре надпочечников и катехоламинов в мозговом слое надпочечников и необходима для процесса гидроксилирования как кофактор ферментов гидроксилаз, например дофамингидроксилазы и др. Она участвует в образовании тетрагидрофолиевой кислоты из фолиевой кислоты, процессинге коллагена (гидроксилировании лизина в оксилизин, пролина в оксипролин), ускоряет всасывание железа, а также активирует фермент желудочного сока пепсиноген, что особенно важно при недостатке соляной кислоты в желудочном соке.

Принцип метода. Метод основан на способности витамина C восстанав­ливать 2,6-дихлорфенолиндофенол (2,6 ДХФИФ – краска Тильманса), который в кислой среде имеет красную окраску, при восстановлении – обесцвечивается, а в щелочной среде окраска синяя. Для предохранения витамина C от разрушения исследуемый раствор титруют в кислой среде щелочным раствором 2,6 ДХФИФ до появления розового окрашивания.

Для расчета содержания аскорбиновой кислоты в продуктах (капуста, картофель, хвоя, шиповник и др.), используют формулу

– содержание аскорбата в 100 г продукта, мг;

– результат титрования 0,001 н раствором 2,6 ДХФИФ, мл;

– объем экстракта, взятый для титрования, мл;

– количество продукта, взятое для анализа, мг;

– общее количество экстракта, мл;

– пересчет на 100 г продукта.

1 Определение содержания витамина C в капусте.

Навеску капусты – 1 г тщательно растирают в ступке с 2 мл 10 %-го раствора соляной кислоты, объем доводят до 10 мл и фильтруют. Отмеривают для титрования 2 мл фильтрата, добавляют 10 капель 10 %-го раствора соляной кислоты и титруют 2,6 ДХФИФ до розовой окраски, сохраняющейся в течение 30 с.

По формуле, указанной выше, рассчитывают содержание аскорбиновой кислоты в 100 г продукта (в мг). По норме их должно быть (в мг): капуста – 25–60; хвоя – 200–400; шиповник – 500–1500.

2 Определение содержания витамина C в картофеле.

Взвешивают 5 г картофеля, тщательно растирают в ступке с 20 каплями 10 %-го раствора соляной кислоты (для того, чтобы картофель не темнел). Постепенно приливают дистиллированную воду – 15 мл. Полученную массу сливают в стаканчик, ополаскивают ступку водой, сливают ее по стеклянной палочке в стаканчик и титруют 0,001н раствором 2,6 ДХФИФ до розового окрашивания. В 100 г картофеля содержится 1–5 мг витамина C.

3 Определение содержания витамина C в моче.

Определение содержания витамина C в моче дает представление о запасах этого витамина в организме, так как наблюдается соответствие между концентрацией витамина C в крови и количеством этого витамина, выделяемым с мочой. Однако при гиповитаминозе С содержание аскорбиновой кислоты в моче не всегда понижено. Часто оно бывает нормальным, несмотря на большой недостаток этого витамина в тканях и органах.

У здоровых людей введение per os 100 мг витамина C быстро приводит к повышению его концентрации в крови и моче. При гиповитаминозе C ткани, испытывающие недостаток в витамине, задерживают принятый витамин C, и его концентрация в моче не повышается. C мочой у здорового человека экскретируется 20–30 мг/сут или 113–170 мкмоль/сут витамина C. У детей уровень экскреции этого витамина понижается при многих острых и хронических инфекционных и соматических заболеваниях.

Ход работы . В стаканчик или колбочку отмеривают 10 мл мочи и 10 мл дистиллированной воды, перемешивают, подкисляют 20 каплями 10% раствора соляной кислоты и титруют 0,001н раствором 2,6 ДХФИФ до розового окрашивания.

Расчет содержания аскорбиновой кислоты в моче проводят по формуле

,

– содержание аскорбиновой кислоты в суточной моче, мг/сут;

Источник

Adblock
detector