Витамины группы В в лечении заболеваний нервной системы
Опубликовано в журнале:
Неврология, нейропсихиатрия, психосоматика, 2009 №2, 84-87 Ю.А. Старчина,
ММА им. И.М. Сеченова
B-group Vitamins In The Treatment Of Nervous System Diseases
Ya.A. Starchina I.M. Sechenov Moscow Medical Academy
- The paper considers the role of B-group vitamins in nervous system performance and the possibilities of their use in the treatment of nervoussystem diseases as solo drugs in mono- and polyneuropathies of varying genesis and in pain syndromes. The prospects for using the vitamincomplex Neurobin are discussed.
Key words: thiamine, pyridoxine, cyancobalamine, polyneuropathy, pain syndrome, Neurobin. Yulia Alexandrovna Starchina:
yul-starchina@yandex.ru
Витамины группы В, прежде всего В1 (тиамин), В6 (пиридоксин), В12 (цианокобаламин), относятся к нейротропным и многие годы применяются в лечении заболеваний периферической нервной системы и ЦНС. Особую роль все три витамина этой группы играют в промежуточном метаболизме, протекающем в ЦНС и периферической нервной системе.
Суточная потребность в витамине B1 составляет 1,3-2,6 мг. Она увеличивается у пожилых людей и у женщин во время беременности и кормления грудью, а также при гиперфункции щитовидной железы, отравлении тяжелыми металлами, курении, стрессах и злоупотреблении алкоголем. Тиамин, локализующийся в мембранах нервных клеток, участвует в процессах регенерации поврежденных нервных волокон, энергетических процессах в нервных клетках, формировании структуры нейрональных мембран и нормальной функции аксонального транспорта 1.
Не меньшее значение имеет витамин B6, особенно для детей, находящихся на искусственном вскармливании, беременных и людей, длительно принимающих антибиотики. Дневная норма витамина B6 для взрослого человека составляет 1,5-3 мг, для детей в возрасте до 1 года — 0,3-0,6 мг, для кормящих и беременных женщин — 2-2,2 мг. Витамин B6 активно задействован в обмене аминокислот, белковом и жировом обмене, иммунных реакциях [1, 5, 6].
Витамин B12 играет важную роль в делении клеток, регулировании жирового и аминокислотного обмена, кроветворении. Суточная норма витамина B12 для взрослых — от 2 до 3 мкг/сут, для детей — от 0,3 до 1 мкг/сут, беременных и кормящих женщин — от 2,6 до 4 мкг/сут. Он участвует в важнейших биохимических процессах миелинизации нервных волокон [7].
Витамины группы В назначают при дефиците питания, злоупотреблении алкоголем, синдроме мальабсорбции. Комплексы витаминов группы В часто используют и для стимуляции естественных механизмов восстановления функции нервных тканей при полиневропатиях различного происхождения, для лечения болевых синдромов [8, 9].
Дефицит любого из витаминов группы В приводит к формированию полиневропатии. При хроническом дефиците тиамина возможно развитие дистальной сенсорномоторной полиневропатии, напоминающей алкогольную и диабетическую [8]. При недостатке пиридоксина возникает дистальная симметричная, преимущественно сенсорная, полиневропатия, проявляющаяся ощущением онемения и парестезиями [8]. Нехватка кобаламина сопряжена в первую очередь с пернициозной анемией, подострой дегенерацией спинного мозга с поражением задних канатиков, при этом в ряде случаев формируется дистальная сенсорная периферическая полиневропатия, характеризующаяся онемением и выпадением сухожильных рефлексов [8, 10].
Дефицит тиамина и токсическое действие этанола играют большую роль в развитии алкогольной полиневропатии, которая в России является одной из самых распространенных форм генерализованного поражения периферических нервов и встречается у 10% лиц 40-70 лет, страдающих алкоголизмом [11]. При алкоголизме наблюдается дефицит тиамина. Он может быть вызван в том числе и несбалансированным, в основном углеводным, питанием. Кроме того, для утилизации алкоголя требуется большое количество витамина В1. Всасывание тиамина и других витаминов группы В нарушается вследствие развития синдрома мальабсорбции. Указанные расстройства приводят к метаболическим сдвигам с разрушением миелина и дегенерацией аксонов. В большинстве случаев алкогольная полиневропатия развивается медленно, первоначально в процесс вовлекаются дистальные отделы нижних конечностей, затем их проксимальные отделы и дистальные отделы верхних конечностей, выявляется аксональное поражение периферических нервов. В крупном исследовании
T.J. Peters и соавт. 325 больных с сенсорной формой алкогольной полиневропатии получали в течение 12 нед пероральный комплекс витаминов группы В [12]. Пациентам 1-й группы назначали только комплекс витаминов группы В, 2-й группы — дополнительно фолиевую кислоту (1 мг), 3-й группы — плацебо. У больных первых двух групп по сравнению с плацебо наблюдались достоверные снижение интенсивности болевого синдрома, улучшение вибрационной чувствительности и выполнения координационных проб. Важно отметить, что добавление фолиевой кислоты не влияло на динамику симптомов. Полученные результаты подтверждают целесообразность назначения комплекса витаминов группы В больным с алкогольной полиневропатией независимо от ее происхождения (этаноловая или тиаминовая). Учитывая, что дефицит витаминов группы В играет ведущую роль в развитии и других форм поражения нервной системы при алкоголизме (энцефалопатия Гайе-Вернике-Корсакова, алкогольная деменция), их целесообразно назначать и в этих случаях.
Комплексные препараты витаминов группы В широко используются в терапии диабетической полиневропатии. Известно положительное влияние тиамина на биохимические процессы метаболизма глюкозы благодаря активации фермента транскетолазы. Назначение тиамина уменьшает перекисное окисление липидов, выраженность оксидативного стресса, эндотелиальной дисфункции, содержание продуктов неферментативного гликирования при диабетической полиневропатии. В эксперименте продемонстрирована его способность снижать гипоперфузию и улучшать оксигенацию тканей, восстанавливать эндотелийзависимую вазодилатацию и ингибировать апоптоз [13]. Предполагают, что положительную роль при этом играют и витамины В6 и В12 [14]. Так, использование витамина B12 при диабетической полиневропатии уменьшает боль, парестезии и выраженность поражения вегетативной нервной системы, о чем свидетельствует анализ 7 клинических контролируемых исследований, проведенных в 1954-2004 гг. [15].
Комбинированные препараты витаминов группы В применяются и для комплексной терапии острых болевых синдромов [9]. В середине прошлого века был установлен анальгетический эффект такой терапии. Как показывает клинический опыт, внутримышечное введение комбинации тиамина, пиридоксина и цианокобаламина способствует купированию боли, нормализует рефлекторные реакции, уменьшает нарушение чувствительности. Поэтому при различных болевых синдромах нередко прибегают к использованию витаминов этой группы в комбинации с другими препаратами. Многочисленными исследованиями доказано, что под влиянием витаминов группы В у пациентов с острой болью в спине наступает клиническое улучшение 9; предполагают, что наиболее выражены анальгетические свойства у витамина B12 [20]. Экспериментальные и клинические исследования витаминов группы В продолжаются 22. Так, в ходе экспериментов выявлено, что под действием комбинации витаминов группы В происходит ингибирование ноцицептивных ответов, вызванных формальдегидом, чего не наблюдается после введения налоксона. Полагают, что антиноцицептивный эффект комбинированного витаминного комплекса может быть обусловлен угнетением синтеза и/или блокированием действия воспалительных медиаторов [21]. Установлено также, что комплекс витаминов группы В усиливает действие главных антиноцицептивных нейромедиаторов — норадреналина и серотонина. Кроме того, в эксперименте на крысах обнаружено подавление ноцицептивных ответов не только в заднем роге спинного мозга, но и в зрительном бугре [22]. Клинически и на экспериментальных моделях было показано, что совместное назначение с витаминами группы В усиливает анальгетический эффект нестероидных противовоспалительных препаратов, антиаллодинический эффект габапентина, дексаметазона и вальпроатов при невропатиях [9, 24, 25]. В результате уменьшаются сроки лечения и риск развития побочных эффектов.
Антиноцицептивный эффект витаминов группы В представляет особый интерес при лечении тоннельных синдромов, в частности столь распространенного синдрома запястного канала. При обследовании 994 пациентов с синдромом запястного канала было показано, что при комбинированной терапии, включающей витамин В6, улучшение наступало у 68% больных, а при аналогичном лечении, но без пиридоксина — только у 14,3% [26]. По данным обзора 14 исследований, посвященных эффективности пиридоксина при этом синдроме, в 8 исследованиях подтверждено уменьшение клинических проявлений и выраженности электрофизиологических нарушений при карпальном синдроме у больных, получавших витамин В6, что может быть связано с его антиноцицептивным действием или с восполнением дефицита этого витамина, при котором могут возникать парестезии и онемение кистей [27].
Весьма перспективным представляется применение в комбинированной терапии ряда заболеваний нервной системы комплексного поливитаминного препарата Нейробион, содержащего комбинацию витаминов группы В: тиамин (В1), пиридоксин (В6) и цианокобаламин (B12). Одна таблетка Нейробиона содержит тиамина дисульфида — 100 мг, пиридоксина гидрохлорида — 200 мг и цианокобаламина — 240 мкг. Необходимо отметить, что одна ампула Нейробиона также содержит три витамина: тиамин — 100 мг, пиридоксин (100 мг) и цианокобаламин (1 мг), что обеспечивает максимальный нейропротективный эффект). Важным преимуществом Нейробиона является наличие пероральной (таблетки) и парентеральной (раствор для инъекций) лекарственных форм, что позволяет максимально индивидуализировать лечение, эффективно комбинировать относительно кратковременные парентеральные курсы лечения и длительный пероральный поддерживающий прием препарата, а также существенно повышает приверженность терапии. Другим преимуществом препарата является оптимально сбалансированное соотношение доз составляющих его витаминов.
В многоцентровом исследовании, проведенном немецкими учеными у 418 пациентов с острой фазой болевого корешкового синдрома, сравнивали эффективность диклофенака 25 мг и комбинации диклофенака 25 мг с витаминами В1 50 мг, В6 50 мг и В12 0,25 мг в течение 2 нед лечения. При достижении клинического эффекта лечение прекращали через 1 нед. У пациентов, получавших комбинированную терапию, отмечены статистически значимые более быстрое развитие терапевтического эффекта, большая эффективность лечения, оцениваемая по характеристикам болевого синдрома, причем лучший эффект получен у пациентов с большей степенью тяжести корешкового синдрома [28].
В другом исследовании, также проведенном немецкими учеными, оценивали влияние длительной терапии Нейробионом на частоту безрецидивного течения острого корешкового синдрома в шейной или поясничнокрестцовой области. 30 пациентов с острой фазой корешкового синдрома получали в течение 3 нед комбинированную терапию Нейрофенаком (комбинация диклофенака с витаминами группы В), а в последующие 6 мес — Нейробионом. Другим 29 пациентам с острой фазой корешкового синдрома назначали только диклофенак, а затем — плацебо в течение 6 мес. Констатировано статистически значимое уменьшение количества рецидивов корешкового синдрома в группе, получавшей терапию Нейробионом (32% против 60% в группе плацебо), в случае развития рецидива тяжесть его была одинаковой в обеих группах. Значительно большим (43% против 16%) было число пациентов без болевого синдрома в течение 6 мес в группе, получавшей Нейробион. При возникновении болевого синдрома на «тяжелую» по интенсивности боль жаловались 29% пациентов, леченных Нейробионом, по сравнению с 56% больных из группы плацебо [29].
Назначение витаминов группы В при различных заболеваниях нервной системы позволяет, с одной стороны, компенсировать существующую недостаточность (возможно, из-за увеличенной потребности организма в витаминах группы В, обусловленной заболеванием), а с другой — стимулировать естественные механизмы восстановления функции нервных тканей. Доказано также анальгезирующее действие комплекса витаминов группы В.
В ближайшее время Нейробион, широко известный за рубежом, появится и на отечественном рынке. Несомненно, препарат займет достойное место в комплексном лечении как мононевропатий, болевых синдромов, вызванных дегенеративными изменениями позвоночника, невропатии лицевого нерва, тригеминальной невралгии, так и полиневропатий различной этиологии.
Источник
НЕРВНЫЙ ИМПУЛЬС
Нервный импульс (лат. nervus нерв; лат. impulsus удар, толчок) — волна возбуждения, распространяющаяся по нервному волокну; единица распространяющегося возбуждения.
Нервный импульс обеспечивает передачу информации от рецепторов к нервным центрам и от них к исполнительным органам — скелетной мускулатуре, гладким мышцам внутренних органов и сосудов, железам внутренней и внешней секреции и т. д.
Сложная информация о действующих на организм раздражениях кодируется в виде отдельных групп Нервных импульсов — рядов. Согласно закону «Все или ничего» (см.) амплитуда и длительность отдельных Нервных импульсов, проходящих по одному и тому же волокну, постоянны, а частота и количество Нервных импульсов в ряду зависят от интенсивности раздражения. Такой способ передачи информации является наиболее помехоустойчивым, т. е. в широких пределах не зависит от состояния проводящих волокон.
Распространение Нервных импульсов отождествляется с проведением потенциалов действия (см. Биоэлектрические потенциалы). Возникновение возбуждения может быть результатом раздражения (см.), напр, воздействие света на зрительный рецептор, звука на слуховой рецептор, или процессов, протекающих в тканях (спонтанное возникновение Н. и.). В этих случаях Н. и. обеспечивают согласованную работу органов при протекании какого-либо физиологического процесса (напр., в процессе дыхания Н. и. вызывают сокращение скелетных мышц и диафрагмы, результатом чего являются вдох и выдох, и т. д.).
В живых организмах передача информации может осуществляться и гуморальным путем, посредством выброса в русло крови гормонов, медиаторов и т. п. Однако преимущество информации, передаваемой при помощи Н. и., состоит в том, что она более целенаправленна, передается быстро и может быть точнее закодирована, чем сигналы, посылаемые гуморальной системой.
Факт, что нервные стволы являются путем, по к-рому передаются влияния от мозга к мышцам и в обратном направлении, был известен еще в эпоху античности. В средние века и вплоть до середины 17 в. считалось, что по нервам распространяется некая субстанция, подобная жидкости или пламени. Идея о электрической природе Н. и. возникла в 18 в. Первые исследования электрических явлений в живых тканях, связанных с возникновением и распространением возбуждения, были осуществлены Л. Гальвани. Г. Гельмгольц показал, что скорость распространения Н. и., к-рую ранее считали близкой к скорости света, имеет конечное значение и может быть точно измерена. Германн (L. Hermann) ввел в физиологию понятие потенциала действия. Объяснение механизма возникновения и проведения возбуждения стало возможным после создания С. Аррениусом теории электролитической диссоциации. В соответствии с этой теорией Бернштейн (J. Bernstein) предположил, что возникновение и проведение Н. и. обусловлено перемещением ионов между нервным волокном и окружающей средой. Англ. исследователи А. Ходжкин, Б. Катц и Э. Хаксли детально исследовали трансмембранные ионные токи, лежащие в основе развития потенциала действия. Позже стали интенсивно изучаться механизмы работы ионных каналов, по к-рым происходит обмен ионами между аксоном и окружающей средой, и механизмы, обеспечивающие способность нервных волокон проводить ряды Н. и. разного ритма и продолжительности.
Н. и. распространяется за счет местных токов, возникающих между возбужденным и невозбужденным участками нервного волокна. Ток, выходящий из волокна наружу в покоящемся участке, служит раздражителем. Наступающая после возбуждения в данном участке нервного волокна рефрактерность обусловливает поступательное движение Н. и.
Количественно соотношения разных фаз развития потенциала действия можно охарактеризовать, сопоставляя их по амплитуде и длительности во времени. Так, напр., для миелиновых нервных волокон группы А млекопитающих диаметр волокна находится в пределах 1—22 мк, скорость проведения — 5—120 м/сек, длительность и амплитуда высоковольтной части (пика, или спайка) — 0,4—0,5 мсек и 100—120 мв соответственно, следовой негативный потенциал — 12—20 мсек (3—5% от амплитуды спайка), следовой позитивный потенциал — 40—60 мсек (0,2% от амплитуды спайка).
Возможности передачи разнообразной информации расширяются за счет повышения скорости развития потенциала действия, скорости распространения, а также за счет повышения лабильности (см.) — т. е. способности возбудимого образования воспроизводить в единицу времени высокие ритмы возбуждения.
Возникновение Н. и. в нервных клетках (см.) или рецепторах (см.) связано с деполяризацией мембраны, т. е. со снижением величины электрического потенциала на мембране (потенциала покоя, или мембранного потенциала). Если величина мембранного потенциала снижается на 10—20% (пороговый критический уровень), то местный процесс переходит в распространяющийся — возникает потенциал действия (см. Возбуждение).
Конкретные особенности распространения Н. и. связаны со строением нервных волокон (см.). Сердцевина волокна (аксоплазма) обладает низким сопротивлением и, соответственно, хорошей проводимостью, а окружающая аксоплазму плазматическая мембрана — большим сопротивлением. Особенно велико электрическое сопротивление наружного слоя у миелинизированных волокон, у к-рых свободны от толстой миелиновой оболочки только перехваты Ранвье. В безмиелиновых волокнах Н. и. движется непрерывно, а в миелиновых — скачкообразно (сальтаторное проведение).
Различают декрементное и бездекрементное распространение волны возбуждения. Декрементное проведение, т. е. проведение возбуждения с угасанием, наблюдается в безмиелиновых волокнах. В таких волокнах скорость проведения Н. и. невелика и по мере отдаления от места раздражения раздражающее действие местных токов постепенно уменьшается вплоть до полного угасания. Декрементное проведение свойственно волокнам, иннервирующим внутренние органы, обладающие низкой функц, подвижностью. Без декрементное проведение характерно для миелиновых и тех безмиелиновых волокон, к-рые передают сигналы к органам, обладающим высокой реактивностью (напр., сердечной мышце). При бездекрементном проведении Н. и. проходит весь путь от места раздражения до места реализации информации без затухания.
Максимальная скорость проведения Н. и., зарегистрированная в быстропроводящих нервных волокнах млекопитающих, составляет 120 м/сек. Высокие скорости проведения импульса могут быть достигнуты за счет увеличения диаметра нервного волокна (у безмиелиновых волокон) или за счет повышения степени миелинизации. Распространение одиночного Н. и. само по себе не требует непосредственных энергетических затрат, т. к. при определенном уровне поляризации мембраны каждый участок нервного волокна находится в состоянии готовности к проведению и раздражающий стимул играет роль «спускового курка». Однако восстановление исходного состояния нервного волокна и поддержание его в готовности к проведению нового Н. и. связано с затратой энергии биохимических реакций, протекающих в нервном волокне. Процессы восстановления приобретают большое значение в случае проведения рядов Н. и. При проведении ритмического возбуждения (рядов импульсов) в нервных волокнах приблизительно вдвое возрастает теплопродукция и потребление кислорода, расходуются макроэргические фосфаты и повышается активность Na,K-АТФ-азы к-рую отождествляют с натриевым насосом. Изменение интенсивности протекания различных физ.-хим. и биохимических процессов зависит от характера ритмического возбуждения (продолжительность рядов импульсов и частота их следования) и физиологического состояния нерва. При проведении большого числа Н. и. в высоком ритме в нервных волокнах может накапливаться «метаболический долг» (это находит отражение в увеличении суммарных следовых потенциалов), и тогда процессы восстановления затягиваются. Но и в этих условиях способность нервных волокон проводить Н. и. долгое время остается неизменной.
Передача Н. и. с нервного волокна на мышечное или какой-либо другой эффектор осуществляется через синапсы (см.). У позвоночных животных в подавляющем большинстве случаев передача возбуждения на эффектор происходит при помощи выделения ацетилхолина (нервно-мышечные синапсы скелетной мускулатуры, синаптические соединения в сердце и др.). Для таких синапсов характерно строго одностороннее проведение импульса и наличие временной задержки передачи возбуждения.
В синапсах, в синаптической щели которых сопротивление электрическому току благодаря большой площади контактирующих поверхностей мало, происходит электрическая передача возбуждения. В них нет синаптической задержки проведения и возможно двустороннее проведение. Такие синапсы свойственны беспозвоночным животным.
Регистрация Н. и. нашла широкое применение в биол, исследованиях и клин, практике. Для регистрации используют шлейфные и чаще катодные осциллографы (см. Осциллография). При помощи микроэлектродной техники (см. Микроэлектродный метод исследования) регистрируют Н. и. в одиночных возбудимых образованиях — нейронах и аксонах. Возможности исследования механизма возникновения и распространения Н. и. значительно расширились после разработки метода фиксации потенциала. Этим методом были получены основные данные о ионных токах (см. Биоэлектрические потенциалы).
Нарушение проведения Н. и. происходит при повреждении нервных стволов, напр, при механических травмах, сдавливании в результате разрастания опухоли или при воспалительных процессах. Такие нарушения проведения Н. и. зачастую бывают необратимы. Следствием прекращения иннервации могут быть тяжелые функциональные и трофические расстройства (напр., атрофия скелетных мышц конечностей после прекращения поступления Н. и. вследствие необратимой травмы нервного ствола). Обратимое прекращение проведения Н. и. может быть вызвано специально, в терапевтических целях. Напр., с помощью анестезирующих средств блокируют импульсацию, идущую от болевых рецепторов в ц. н. с. Обратимое прекращение проведения Н. и. вызывает и новокаиновая блокада. Временное прекращение передачи Н. и. по нервным проводникам наблюдается и во время общего наркоза.
Библиография: Бpеже М. А. Электрическая активность нервной системы, пер. с англ., М., 1979; Жуков Е. К. Очерки по нервно-мышечной физиологии, Л., 1969; Коннели К. Восстановительные процессы и обмен веществ в нерве, в кн.: Совр, пробл. биофизики, пер. с англ., под ред. Г. М. Франка и А. Г. Пасынского, т. 2, с. 211, М., 1961; Костюк П. Г. Физиология центральной нервной системы, Киев, 1977; Латманизова Л. В. Очерк физиологии возбуждения, М., 1972; Общая физиология нервной системы, под ред. П. Г. Костюка, Л., 1979; Тасаки И. Нервное возбуждение, пер. с англ., М., 1971; Ходжкин А. Нервный импульс, пер. с англ., М., 1965; Ходоров Б. И. Общая физиология возбудимых мембран, М., 1975.
Источник