Меню

Неферментная антиоксидантная система витамины

Витамины и микроэлементы, участвующие в регуляции антиоксидантной системы (Fe, Cu, Zn, Se, S, Co, Mn, Mg, витамины A, C, E, K, B2, B5, B6, омега-3, омега-6 жирные кислоты)

Комплексный анализ основных витаминов и микроэлементов, необходимых для нормального функционирования антиоксидантной системы организма.

Синонимы английские

Antioxidant vitamins and trace elements.

Высокоэффективная жидкостная хроматография.

Какой биоматериал можно использовать для исследования?

Как правильно подготовиться к исследованию?

  • Не принимать пищу в течение 8 часов до исследования, можно пить чистую негазированную воду.
  • Не курить в течение 30 минут до исследования.

Общая информация об исследовании

Биохимические процессы, происходящие в организме человека, сопровождаются образованием соединений, обладающих свойствами окислителей (прооксидантов). Наиболее выраженными окислительными свойствами обладают активные формы кислорода (ионы кислорода, перекиси и свободные радикалы). Прооксиданты в норме выполняют ряд важных функций, таких как обеспечение врождённого и приобретенного иммунитета, процесс передачи сигнала в клетке, регуляция диаметра артериальных сосудов, поступление глюкозы в мышечную ткань и многие другие. С другой стороны, прооксиданты способны модифицировать структуру липидов, белков и нуклеиновых кислот, что может приводить к неблагоприятным последствиям. Так, в последнее время появились данные о роли прооксидантов в возникновении ишемической болезни сердца, рассеянного склероза, сахарного диабета, злокачественных опухолей и многих других заболеваний.

В норме для предотвращения вредного воздействия прооксидантов в организме синтезируются соединения-антагонисты, обладающие мощным восстановительным потенциалом (антиоксиданты). Кроме того, антиоксидантными свойствами обладают некоторые витамины и микроэлементы, источником которых для человека являются пищевые продукты. Во многих исследованиях было показано, что люди, употребляющие большое количество фруктов и овощей, богатых пищевыми антиоксидантами, действительно реже страдают заболеваниями сердца. Кроме того, показано, что профилактическое назначение препаратов витаминов и микроэлементов также снижает риск заболеваний сердца.

Наиболее выраженными антиоксидантными свойствами обладают витамины А, С и Е и микроэлементы железо, медь, цинк и селен.

Антиоксидантные витамины E, С и A

Витамин Е входит в состав липопротеинов и клеточных мембран и препятствует перекисному окислению полиненасыщенных жирных кислот. Он является основным антиоксидантом липопротеинов низкой плотности (ЛПНП). Кроме того, витамин Е тормозит агрегацию тромбоцитов и адгезию моноцитов.

Витамин Е в больших количествах обнаруживается в растительных маслах и пшеничных зародышах, а также в мясе, рыбе, фруктах и овощах. Рекомендуемая суточная норма потребления (RDA) витамина Е составляет 30 МЕ (30 мг/сут).

Витамин С – это основной антиоксидант сыворотки крови. Этот водорастворимый витамин нейтрализует свободные радикалы плазмы крови и, таким образом, препятствует их взаимодействию с ЛПНП. Также витамин С восстанавливает активную форму витамина Е, способствует выведению холестерина, улучшает вазодилатацию сосудов и тормозит агрегацию моноцитов.

Пищевыми источниками витамина С являются цитрусовые фрукты, клубника, помидоры, капуста и зеленолистные овощи. RDAвитамина С составляет 60 мг, однако для курящих людей, пациентов с заживающими ранами, беременных и кормящих грудью женщин необходимо большее количество витамина С.

Витамин А, а точнее его предшественник β-каротин, проявляет антиоксидантные свойства как в сыворотке крови, так и в составе ЛПНП. Он тормозит захват окисленных ЛПНП макрофагами, но не препятствует их первоначальному окислению.

Читайте также:  Норма потребления витамина в12 для детей

Витамин А в больших количествах обнаруживается во фруктах, желтых и оранжевых овощах (морковь, тыква, картофель) и темно-зеленых овощах (шпинат и брокколи). RDAвитамина А не определена.

Хотя применение препаратов витаминов Е, С и А не было ассоциировано с какими-либо выраженными токсическими эффектами, следует подчеркнуть, что в одном из исследований был выявлен повышенный риск рака легкого у курящих пациентов, получающих препарат витамина А.

Витамины E, С и A – это основные витамины, обладающие антиоксидантными свойствами. Роль других витаминов (К, группы В, омега-3 и омега-6 жирных кислот) также важна, однако не является определяющей.

Антиоксидантные микроэлементы Fe, Cu, Zn, Se

Микроэлементы являются кофакторами ферментов антиоксидантной системы, катализирующих разрушение свободных радикалов.

Источник

1. Ферментативная антиоксидантная система

К ферментам, защищающим клетки от действия активных форм кислорода, относят супе-роксиддисмутазу, каталазу и глутатионпероксидазу. Наиболее активны эти ферменты в печени, надпочечниках и почках, где содержание митохондрий, цитохрома Р450и пероксисом особенно велико.

Супероксиддисмутаза(СОД) превращает супероксидные анионы в перекись водорода:

Изоферменты СОД находятся и в цитозоле (Cu 2+ иZn 2+ ) и в митохондриях (Mn 2+ ) и являются как бы первой линией защиты, потому что супероксидный анион образуется обычно первым из активных форм кислорода. СОД — индуцируемый фермент, т.е. синтез его увеличивается, если в клетках активируется СРО.

Каталаза— геминовый фермент, катализирует реакцию разрушения перекиси водорода. При этом образуется вода и молекулярный кислород:

Каталаза находится в основном в пероксисомах, где образуется наибольшее количество перекиси водорода, а также в лейкоцитах, где она защищает клетки от последствий «респираторного взрыва» и в эритроцитах, где она защищает гем гемоглобина от окисления.

Глутатионпероксидаза— обеспечивает разрушение перекиси водорода и гидропероксидов липидов при окислении глутатиона (у-глутамилцистеинилглицин): Н2О2+ 2 GSH → 2 Н2О + G-S-S-G. Глутатионпероксидаза в качестве кофермента содержит селен.

Глутатионредуктазавосстанавливает окисленный глутатион с участием НАДФН2:

GS-SG + НАДФН2 → 2 GSH + НАДФ + .

Недостаток глутатиона в клетках, например эритроцитах, который может быть обусловлен действием токсических веществ, например ионами тяжелых металлов или наследственным недостатком глутатионредуктазы приводит к активации перекисного окисления; это, в частности, наблюдается при некоторых видах гемолитических анемий.

Фосфолипазав мембране отщепляет от фосфолипидов окисленные жирные кислоты, содержащие гидроперекисную группу (LOOH), тем самым разрушаются гидроперекиси липидов, предотвращается разветвление цепей окисления липидов в мембранах.

2. Неферментативная антиоксидантная система

«Липидные антиоксиданты» — производные фенола, способны инактивировать свободные радикалы в гидрофобном слое мембран и предотвращать развитие ПОЛ. К ним относится α-токоферол (витамин Е), убихинон (коэнзим Q), тироксин и синтетические соединения, например ионол (бутилированный гидрокситолуол).

Витамин Е(α-токоферол) самый распространённый липофильный антиоксидант, он обеспечивает защиту мембран от СРО. Различают 8 типов токоферолов, но α-токоферол наиболее активен. α-Токоферол отдаёт атом водорода радикалу липида ROO , восстанавливает его до гидропероксида (ROOH), а сам превращается в малоактивный свободный радикал, что прерывает ПОЛ:

Регенерацию α-токоферола осуществляет витамин С.

Свободный радикал витамина Е стабилен и не поддерживает ПОЛ, он взаимодействует с радикалами липидных перекисей, восстанавливает их, а сам превращается в стабильную окисленную форму — токоферолхинон.

Читайте также:  Витамины б12 уколы как называется

Витамин Сингибирует СРО с помощью двух различных механизмов:

1). восстанавливает в мембранах токоферолхинон до витамина Е:

НО-аскорбат-ОН + α-ТФ-О·→ α-ТФ-ОН + НО-аскорбат-О·(семидегидроаскорбиновая к-та)

НО-аскорбат-О·+ α-ТФ-О·→ α-ТФ-ОН + О=аскорбат=О (дегидроаскорбиновая к-та)

Регенерация аскорбиновой кислоты идет с участием ферментативных систем:

а). В микросомах, с участием комплекса НАДН2-редуктаза-цитохромb5:

2НО-аскорбат-О·+ НАДН2 → 2НО-аскорбат-ОН + НАД +

б). В митохондриях, с участием НАДН2-семидегидроаскорбатредуктазы:

2НО-аскорбат-О·+ НАДН2 → 2НО-аскорбат-ОН + НАД +

в). В цитозоле, с участием НАДФН2-дегидроаскорбатредуктазы:

О=аскорбат=О + 2НАДФН2 → НО-аскорбат-ОН + 2НАДФ +

г). В цитозоле, с участием GSH-дегидроаскорбатредуктазы:

О=аскорбат=О + 2GSH → НО-аскорбат-ОН +GS-SG

2). взаимодействует с активными формами кислорода — О 2, Н2О2, НО и инактивирует их.

β-Каротин, предшественник витамина А, также обладает антиоксидантным действием и ин-гибирует ПОЛ.

Соединения, связывающие железо. Большинство из них, включая такие природные соединения как дипептид карнозин, не просто связывают железо, но, самое главное, не дают ему возможности приникнуть в липидную фазу мембран, поскольку образующиеся комплексы, в силу своей полярности, не проникают в гидрофобную зону.

Для детоксикации двухвалентного железа в организме существует, по-видимому, целая система окисления и связывания ионов железа. В плазме крови эта система представлена ферментом церрулоплазмином (феррооксидазой), который окисляет Fe 2+ до Fe 3+ кислородом без образования свободных радикалов, и белком трансферрином, который связывает и переносит в кровяном русле ионы трехвалентного железа, которые затем захватывается клетками. В клетках железо может восстанавливаться аскорбиновой кислотой и другими восстановителями, но затем окисляется и депонируется в окисленной форме внутри ферментного белкового комплекса ферритина.

В.В. Кржечковская, А.А. Кубатиев, Ю.И. Наумов. Мембраносвязанный цитохром b5 и метаболизм липидов (реакции не связанные с участием системы цитохрома р -450). Серия. Критические технологии. Мембраны, 2004, № 2 (22).

Источник

Антиоксидантная защита: ферментная и неферментная

Клетки имеют мощную антиоксидантную защиту, состоящую из двух уровней:

1) ферментативная (происходит восстановление продуктов перекисного окисления и их ликвидация с помощью ферментов):

а) супероксиддисмутаза – сложный фермент, встречаются Mg, Zn, Fe, Cu – содержащие формы в разных тканях. Его активность повышается при любых формах активации перекисных процессов. Этот фермент за рубежом выделяется в чистом виде и эффективно используется в лучевой терапии. Действие СОД направлено на супероксид ион:

б) каталаза (её субстратом является Н2О2) особенно активна в эритроцитах, которые специализируются на переносе кислорода:

в) пероксидаза – наиболее активна глутатион – пероксидаза

г) глутатион – редуктаза – является непосредственным защитником эритроцитов, в частности предохраняют от образования МеHb, который не способен к транспорту кислорода, что ведёт к гипоксии. МеHb образуется при приёме избытка нитратов, аспирина, сульфаниламидов.

К ферментативной антиоксидантной защите относятся ферменты, генерирующие восстановительную форму НАД * Н и НАДФ * Н (такую систему имеют все клетки, но особенно мозг и миокард), а также ферменты, поддерживающие восстановительную форму металлов.

2) неферментативная: сюда относится ряд легко окисляющихся веществ, обладающих меньшей активностью, чем естественные метаболиты:

— витамины Е и А (являются компонентами мембран и блокируют перекисные процессы)

Читайте также:  Нарушение сумеречного зрения недостаток какого витамина

Между этими тремя витаминами существует взаимосвязь: витамин С обеспечивает восстановительную форму витамина Е, а для поддержания восстановительной формы витамина С нужен витамин А. В настоящее время существует мощный препарат антиоксидантной защиты, представляющий собой комплекс трёх витаминов (Vit C = 2 г, Vit E = 500000 E, Vit A + 140000 – 170000 Е). Витамин А довольно токсичен, поэтому в качестве замены используется В – каротин.

Также к антиоксидантам относятся Vit F, кортикостероиды, гистидин, аргинин, билирубин и растительные пигменты.

Заведующий кафедрой биологической химии, д.м.н., проф. Грицук А. И. ___________

Министерство здравоохранения Республики Беларусь

УО «Гомельский государственный медицинский университет»

Кафедра биологической химии

Обсуждено на заседании кафедры (МК или ЦУНМС)

ЛЕКЦИЯ
по биологической химии

для студентов _2__ курса лечебного факультета

Тема Биохимия крови-1. Основы регуляции КОС.

Учебные и воспитательные цели:

1. О кислотно-основном состоянии (КОС). О принципах регуляции (изоосмолярность, электронейтральность, постоянство pH). О механизмах регуляции КОС (физико-химических, физиологических). О характеристике и механизме действия буферов. О функции экскреторных систем. О способах оценки КОС крови (pH, pCO2, BЕ, HCO3 — , ионов Na + , K + Cl — плазмы и эритроцитов, pH мочи).

2. О белках крови (методах фракционирования, осаждения, электрофореза). О характеристиках основных фракций – альбумине и глобулинаъ. О белковом коэффициенте. О функциональной классификации белков плазмы крови. О белках острой фазы. Об остаточном азоте, его диагностическом значение.

3. Об особенностях метаболизма эритроцита. Об антиоксидантной системе. О роли GSH, ПФЦ, гликолиза, изоцитрат- и малатдегидрогеназ, о роли генетических дефектов — гемолитические анемии.

1. Мультимедийная презентация.

РАСЧЕТ УЧЕБНОГО ВРЕМЕНИ

№ п/п Перечень учебных вопросов Количество выделяемого времени в минутах
1. Определение КОС. Принципы регуляции КОС. Изоосмолярность, электронейтральность, постоянство pH. Механизмы регуляции КОС — физико-химический (забуферивание, разбавление, фиксация H + в слабодиссоциируемые соединения). Характеристика, и механизм действия буферов. Физиологические механизмы- функции экскреторных систем. Способы оценки КОС крови (pH, pCO2, BЕ, HCO3 — , ионов Na + , K + Cl — плазмы и эритроцитов, pH мочи).
2. Белки крови (методы фракционирования, осаждения, электрофорез). Характеристика основных фракций – альбумин и глобулины. Белковый коэффициент. Функциональная классификация белков плазмы крови. Белки острой фазы. Остаточный азот, его диагностическое значение.
3. Особенности метаболизма эритроцита. Антиоксидантная система. Роль GSH, ПФЦ, гликолиза, изоцитрат и малатдегидрогеназ, генетические дефекты — гемолитические анемии.

Заведующий кафедрой биологической химии, д.м.н., проф. Грицук А. И. ___________

Министерство здравоохранения Республики Беларусь

УО «Гомельский государственный медицинский университет»

Кафедра биологической химии

Обсуждено на заседании кафедры (МК или ЦУНМС)

ЛЕКЦИЯ
по биологической химии

для студентов _2__ курса лечебного факультета

Тема Биохимия крови-2. Обмен гемоглобина.

Учебные и воспитательные цели:

1. Об особенностях метаболизма эритроцитов крови. О шунте Раппопорта. О роли 2,3-ДФГК. О биосинтезе, строении гема. О роли железа, характеристике белковой части Hb. О динамике изменений типов Hb в онтогенезе. О распаде Hb в норме и при патологии (уровень билирубина). О дифференциальной диагностике желтух (гемолитической, обтурационной, паренхиматозной).

2. Об обмене железа, всасывании, транспорте, депонировании.

3. Об особенностях обмена лейкоцитов. О фагоцитозе. О биохимии тромбоцитов.

Источник

Adblock
detector