Витамины и микроэлементы, участвующие в регуляции антиоксидантной системы (Fe, Cu, Zn, Se, S, Co, Mn, Mg, витамины A, C, E, K, B2, B5, B6, омега-3, омега-6 жирные кислоты)
Комплексный анализ основных витаминов и микроэлементов, необходимых для нормального функционирования антиоксидантной системы организма.
Синонимы английские
Antioxidant vitamins and trace elements.
Высокоэффективная жидкостная хроматография.
Какой биоматериал можно использовать для исследования?
Как правильно подготовиться к исследованию?
- Не принимать пищу в течение 8 часов до исследования, можно пить чистую негазированную воду.
- Не курить в течение 30 минут до исследования.
Общая информация об исследовании
Биохимические процессы, происходящие в организме человека, сопровождаются образованием соединений, обладающих свойствами окислителей (прооксидантов). Наиболее выраженными окислительными свойствами обладают активные формы кислорода (ионы кислорода, перекиси и свободные радикалы). Прооксиданты в норме выполняют ряд важных функций, таких как обеспечение врождённого и приобретенного иммунитета, процесс передачи сигнала в клетке, регуляция диаметра артериальных сосудов, поступление глюкозы в мышечную ткань и многие другие. С другой стороны, прооксиданты способны модифицировать структуру липидов, белков и нуклеиновых кислот, что может приводить к неблагоприятным последствиям. Так, в последнее время появились данные о роли прооксидантов в возникновении ишемической болезни сердца, рассеянного склероза, сахарного диабета, злокачественных опухолей и многих других заболеваний.
В норме для предотвращения вредного воздействия прооксидантов в организме синтезируются соединения-антагонисты, обладающие мощным восстановительным потенциалом (антиоксиданты). Кроме того, антиоксидантными свойствами обладают некоторые витамины и микроэлементы, источником которых для человека являются пищевые продукты. Во многих исследованиях было показано, что люди, употребляющие большое количество фруктов и овощей, богатых пищевыми антиоксидантами, действительно реже страдают заболеваниями сердца. Кроме того, показано, что профилактическое назначение препаратов витаминов и микроэлементов также снижает риск заболеваний сердца.
Наиболее выраженными антиоксидантными свойствами обладают витамины А, С и Е и микроэлементы железо, медь, цинк и селен.
Антиоксидантные витамины E, С и A
Витамин Е входит в состав липопротеинов и клеточных мембран и препятствует перекисному окислению полиненасыщенных жирных кислот. Он является основным антиоксидантом липопротеинов низкой плотности (ЛПНП). Кроме того, витамин Е тормозит агрегацию тромбоцитов и адгезию моноцитов.
Витамин Е в больших количествах обнаруживается в растительных маслах и пшеничных зародышах, а также в мясе, рыбе, фруктах и овощах. Рекомендуемая суточная норма потребления (RDA) витамина Е составляет 30 МЕ (30 мг/сут).
Витамин С – это основной антиоксидант сыворотки крови. Этот водорастворимый витамин нейтрализует свободные радикалы плазмы крови и, таким образом, препятствует их взаимодействию с ЛПНП. Также витамин С восстанавливает активную форму витамина Е, способствует выведению холестерина, улучшает вазодилатацию сосудов и тормозит агрегацию моноцитов.
Пищевыми источниками витамина С являются цитрусовые фрукты, клубника, помидоры, капуста и зеленолистные овощи. RDAвитамина С составляет 60 мг, однако для курящих людей, пациентов с заживающими ранами, беременных и кормящих грудью женщин необходимо большее количество витамина С.
Витамин А, а точнее его предшественник β-каротин, проявляет антиоксидантные свойства как в сыворотке крови, так и в составе ЛПНП. Он тормозит захват окисленных ЛПНП макрофагами, но не препятствует их первоначальному окислению.
Витамин А в больших количествах обнаруживается во фруктах, желтых и оранжевых овощах (морковь, тыква, картофель) и темно-зеленых овощах (шпинат и брокколи). RDAвитамина А не определена.
Хотя применение препаратов витаминов Е, С и А не было ассоциировано с какими-либо выраженными токсическими эффектами, следует подчеркнуть, что в одном из исследований был выявлен повышенный риск рака легкого у курящих пациентов, получающих препарат витамина А.
Витамины E, С и A – это основные витамины, обладающие антиоксидантными свойствами. Роль других витаминов (К, группы В, омега-3 и омега-6 жирных кислот) также важна, однако не является определяющей.
Антиоксидантные микроэлементы Fe, Cu, Zn, Se
Микроэлементы являются кофакторами ферментов антиоксидантной системы, катализирующих разрушение свободных радикалов.
Источник
1. Ферментативная антиоксидантная система
К ферментам, защищающим клетки от действия активных форм кислорода, относят супе-роксиддисмутазу, каталазу и глутатионпероксидазу. Наиболее активны эти ферменты в печени, надпочечниках и почках, где содержание митохондрий, цитохрома Р450и пероксисом особенно велико.
Супероксиддисмутаза(СОД) превращает супероксидные анионы в перекись водорода:
Изоферменты СОД находятся и в цитозоле (Cu 2+ иZn 2+ ) и в митохондриях (Mn 2+ ) и являются как бы первой линией защиты, потому что супероксидный анион образуется обычно первым из активных форм кислорода. СОД — индуцируемый фермент, т.е. синтез его увеличивается, если в клетках активируется СРО.
Каталаза— геминовый фермент, катализирует реакцию разрушения перекиси водорода. При этом образуется вода и молекулярный кислород:
Каталаза находится в основном в пероксисомах, где образуется наибольшее количество перекиси водорода, а также в лейкоцитах, где она защищает клетки от последствий «респираторного взрыва» и в эритроцитах, где она защищает гем гемоглобина от окисления.
Глутатионпероксидаза— обеспечивает разрушение перекиси водорода и гидропероксидов липидов при окислении глутатиона (у-глутамилцистеинилглицин): Н2О2+ 2 GSH → 2 Н2О + G-S-S-G. Глутатионпероксидаза в качестве кофермента содержит селен.
Глутатионредуктазавосстанавливает окисленный глутатион с участием НАДФН2:
GS-SG + НАДФН2 → 2 GSH + НАДФ + .
Недостаток глутатиона в клетках, например эритроцитах, который может быть обусловлен действием токсических веществ, например ионами тяжелых металлов или наследственным недостатком глутатионредуктазы приводит к активации перекисного окисления; это, в частности, наблюдается при некоторых видах гемолитических анемий.
Фосфолипазав мембране отщепляет от фосфолипидов окисленные жирные кислоты, содержащие гидроперекисную группу (LOOH), тем самым разрушаются гидроперекиси липидов, предотвращается разветвление цепей окисления липидов в мембранах.
2. Неферментативная антиоксидантная система
«Липидные антиоксиданты» — производные фенола, способны инактивировать свободные радикалы в гидрофобном слое мембран и предотвращать развитие ПОЛ. К ним относится α-токоферол (витамин Е), убихинон (коэнзим Q), тироксин и синтетические соединения, например ионол (бутилированный гидрокситолуол).
Витамин Е(α-токоферол) самый распространённый липофильный антиоксидант, он обеспечивает защиту мембран от СРО. Различают 8 типов токоферолов, но α-токоферол наиболее активен. α-Токоферол отдаёт атом водорода радикалу липида ROO ∙ , восстанавливает его до гидропероксида (ROOH), а сам превращается в малоактивный свободный радикал, что прерывает ПОЛ:
Регенерацию α-токоферола осуществляет витамин С.
Свободный радикал витамина Е стабилен и не поддерживает ПОЛ, он взаимодействует с радикалами липидных перекисей, восстанавливает их, а сам превращается в стабильную окисленную форму — токоферолхинон.
Витамин Сингибирует СРО с помощью двух различных механизмов:
1). восстанавливает в мембранах токоферолхинон до витамина Е:
НО-аскорбат-ОН + α-ТФ-О·→ α-ТФ-ОН + НО-аскорбат-О·(семидегидроаскорбиновая к-та)
НО-аскорбат-О·+ α-ТФ-О·→ α-ТФ-ОН + О=аскорбат=О (дегидроаскорбиновая к-та)
Регенерация аскорбиновой кислоты идет с участием ферментативных систем:
а). В микросомах, с участием комплекса НАДН2-редуктаза-цитохромb5:
2НО-аскорбат-О·+ НАДН2 → 2НО-аскорбат-ОН + НАД +
б). В митохондриях, с участием НАДН2-семидегидроаскорбатредуктазы:
2НО-аскорбат-О·+ НАДН2 → 2НО-аскорбат-ОН + НАД +
в). В цитозоле, с участием НАДФН2-дегидроаскорбатредуктазы:
О=аскорбат=О + 2НАДФН2 → НО-аскорбат-ОН + 2НАДФ +
г). В цитозоле, с участием GSH-дегидроаскорбатредуктазы:
О=аскорбат=О + 2GSH → НО-аскорбат-ОН +GS-SG
2). взаимодействует с активными формами кислорода — О ∙ 2, Н2О2, НО ∙ и инактивирует их.
β-Каротин, предшественник витамина А, также обладает антиоксидантным действием и ин-гибирует ПОЛ.
Соединения, связывающие железо. Большинство из них, включая такие природные соединения как дипептид карнозин, не просто связывают железо, но, самое главное, не дают ему возможности приникнуть в липидную фазу мембран, поскольку образующиеся комплексы, в силу своей полярности, не проникают в гидрофобную зону.
Для детоксикации двухвалентного железа в организме существует, по-видимому, целая система окисления и связывания ионов железа. В плазме крови эта система представлена ферментом церрулоплазмином (феррооксидазой), который окисляет Fe 2+ до Fe 3+ кислородом без образования свободных радикалов, и белком трансферрином, который связывает и переносит в кровяном русле ионы трехвалентного железа, которые затем захватывается клетками. В клетках железо может восстанавливаться аскорбиновой кислотой и другими восстановителями, но затем окисляется и депонируется в окисленной форме внутри ферментного белкового комплекса ферритина.
В.В. Кржечковская, А.А. Кубатиев, Ю.И. Наумов. Мембраносвязанный цитохром b5 и метаболизм липидов (реакции не связанные с участием системы цитохрома р -450). Серия. Критические технологии. Мембраны, 2004, № 2 (22).
Источник
Антиоксидантная защита: ферментная и неферментная
Клетки имеют мощную антиоксидантную защиту, состоящую из двух уровней:
1) ферментативная (происходит восстановление продуктов перекисного окисления и их ликвидация с помощью ферментов):
а) супероксиддисмутаза – сложный фермент, встречаются Mg, Zn, Fe, Cu – содержащие формы в разных тканях. Его активность повышается при любых формах активации перекисных процессов. Этот фермент за рубежом выделяется в чистом виде и эффективно используется в лучевой терапии. Действие СОД направлено на супероксид ион:
б) каталаза (её субстратом является Н2О2) особенно активна в эритроцитах, которые специализируются на переносе кислорода:
в) пероксидаза – наиболее активна глутатион – пероксидаза
г) глутатион – редуктаза – является непосредственным защитником эритроцитов, в частности предохраняют от образования МеHb, который не способен к транспорту кислорода, что ведёт к гипоксии. МеHb образуется при приёме избытка нитратов, аспирина, сульфаниламидов.
К ферментативной антиоксидантной защите относятся ферменты, генерирующие восстановительную форму НАД * Н и НАДФ * Н (такую систему имеют все клетки, но особенно мозг и миокард), а также ферменты, поддерживающие восстановительную форму металлов.
2) неферментативная: сюда относится ряд легко окисляющихся веществ, обладающих меньшей активностью, чем естественные метаболиты:
— витамины Е и А (являются компонентами мембран и блокируют перекисные процессы)
Между этими тремя витаминами существует взаимосвязь: витамин С обеспечивает восстановительную форму витамина Е, а для поддержания восстановительной формы витамина С нужен витамин А. В настоящее время существует мощный препарат антиоксидантной защиты, представляющий собой комплекс трёх витаминов (Vit C = 2 г, Vit E = 500000 E, Vit A + 140000 – 170000 Е). Витамин А довольно токсичен, поэтому в качестве замены используется В – каротин.
Также к антиоксидантам относятся Vit F, кортикостероиды, гистидин, аргинин, билирубин и растительные пигменты.
Заведующий кафедрой биологической химии, д.м.н., проф. | Грицук А. И. | ___________ |
Министерство здравоохранения Республики Беларусь
УО «Гомельский государственный медицинский университет»
Кафедра биологической химии
Обсуждено на заседании кафедры (МК или ЦУНМС)
ЛЕКЦИЯ
по биологической химии
для студентов _2__ курса лечебного факультета
Тема Биохимия крови-1. Основы регуляции КОС.
Учебные и воспитательные цели:
1. О кислотно-основном состоянии (КОС). О принципах регуляции (изоосмолярность, электронейтральность, постоянство pH). О механизмах регуляции КОС (физико-химических, физиологических). О характеристике и механизме действия буферов. О функции экскреторных систем. О способах оценки КОС крови (pH, pCO2, BЕ, HCO3 — , ионов Na + , K + Cl — плазмы и эритроцитов, pH мочи).
2. О белках крови (методах фракционирования, осаждения, электрофореза). О характеристиках основных фракций – альбумине и глобулинаъ. О белковом коэффициенте. О функциональной классификации белков плазмы крови. О белках острой фазы. Об остаточном азоте, его диагностическом значение.
3. Об особенностях метаболизма эритроцита. Об антиоксидантной системе. О роли GSH, ПФЦ, гликолиза, изоцитрат- и малатдегидрогеназ, о роли генетических дефектов — гемолитические анемии.
1. Мультимедийная презентация.
РАСЧЕТ УЧЕБНОГО ВРЕМЕНИ
№ п/п | Перечень учебных вопросов | Количество выделяемого времени в минутах |
1. | Определение КОС. Принципы регуляции КОС. Изоосмолярность, электронейтральность, постоянство pH. Механизмы регуляции КОС — физико-химический (забуферивание, разбавление, фиксация H + в слабодиссоциируемые соединения). Характеристика, и механизм действия буферов. Физиологические механизмы- функции экскреторных систем. Способы оценки КОС крови (pH, pCO2, BЕ, HCO3 — , ионов Na + , K + Cl — плазмы и эритроцитов, pH мочи). | |
2. | Белки крови (методы фракционирования, осаждения, электрофорез). Характеристика основных фракций – альбумин и глобулины. Белковый коэффициент. Функциональная классификация белков плазмы крови. Белки острой фазы. Остаточный азот, его диагностическое значение. | |
3. | Особенности метаболизма эритроцита. Антиоксидантная система. Роль GSH, ПФЦ, гликолиза, изоцитрат и малатдегидрогеназ, генетические дефекты — гемолитические анемии. |
Заведующий кафедрой биологической химии, д.м.н., проф. | Грицук А. И. | ___________ |
Министерство здравоохранения Республики Беларусь
УО «Гомельский государственный медицинский университет»
Кафедра биологической химии
Обсуждено на заседании кафедры (МК или ЦУНМС)
ЛЕКЦИЯ
по биологической химии
для студентов _2__ курса лечебного факультета
Тема Биохимия крови-2. Обмен гемоглобина.
Учебные и воспитательные цели:
1. Об особенностях метаболизма эритроцитов крови. О шунте Раппопорта. О роли 2,3-ДФГК. О биосинтезе, строении гема. О роли железа, характеристике белковой части Hb. О динамике изменений типов Hb в онтогенезе. О распаде Hb в норме и при патологии (уровень билирубина). О дифференциальной диагностике желтух (гемолитической, обтурационной, паренхиматозной).
2. Об обмене железа, всасывании, транспорте, депонировании.
3. Об особенностях обмена лейкоцитов. О фагоцитозе. О биохимии тромбоцитов.
Источник