Меню

Нарушение обмена кальция фосфора витамина d

Нарушение обмена кальция фосфора витамина d

Витамин D активно влияет на всасывание кальция из желудочно-кишечного тракта. Он также влияет на процессы образования и рассасывания костной ткани. Однако витамин D не является веществом, непосредственно влияющим на эти процессы. В печени и почках витамин D путем ряда последовательных процессов превращается в конечный активный продукт — 1,25-дигидроксихолекальциферол, или 1,25(ОН)2D3. На рисунке ниже показаны последовательные этапы образования этого вещества из витамина D. Обсудим эти этапы.

Активация преобразований витамина D3 в 1,25-дигидроксихо-лекальциферол и роль витамина D в регуляции концентрации кальция в плазме

а) Холекальциферол (витамин D3) образуется в коже. Некоторые соединения (производные стерола) принадлежат к семейству витамина D и выполняют в большей или меньшей степени сходные функции. Витамин D3 (называемый также холекальциферолом) является наиболее важным из них и образуется из 7-дегидрохолестерола (вещества, в норме присутствующего в коже) под влиянием ультрафиолетовых лучей при инсоляции. Следовательно, достаточное по времени пребывание на солнце предупреждает развитие дефицита витамина D.

Дополнительное количество витамина D, поступающее с пищей, идентично холекальциферолу, который образуется в коже, за исключением замены одного или двух атомов в молекуле, что не оказывает влияния на функциональные свойства этого вещества.

б) Холекальциферол превращается в 25-гидроксихолекальциферол в печени. Первый этап активации холекальциферола заключается в превращении его в 25-гидроксихолекальциферол, которое осуществляется в печени. Этот процесс ограничивается существующей обратной связью, опосредованной 25-гидроксихолекальциферолом, регулирующим таким образом реакцию превращения. Влияние обратной связи чрезвычайно важно по двум причинам.

Во-первых, механизм обратной связи жестко регулирует концентрацию 25-гидроксикальциферола в плазме (для облегчения понимания просим вас изучить рисунок ниже).

Влияние увеличивающегося поступления витамина D3 на концентрацию 1,25-дигидроксихолекальциферола. На графике показано, что значительное изменение поступления витамина D оказывает небольшое влияние на образование итогового количества активного витамина D

Заметим, что поступление витамина D3 может увеличиться во много раз, при этом концентрация 25-гидроксихолекальциферола остается практически неизменной. Высокая надежность контроля механизмом обратной связи предупреждает развитие клинических проявлений гипервитаминоза D, если поступление витамина D3 колеблется в широких пределах.

Во-вторых, регулируемое превращение витамина D3 в 25-гидроксихолекальциферол позволяет депонировать витамин D3 в печени для дальнейшего его использования. 25-гидроксихолекальциферол — конечный продукт реакции превращения, который присутствует в организме всего несколько недель, в то время как витамин D может храниться в печени несколько месяцев.

в) Образование 1,25-дигидрохолекальциферола в почках и его регуляция паратгормоном. На рисунке выше показано превращение 25-гидроксихолекальциферола в 1,25-дигидроксихолекалъциферол в почках. Это вещество является наиболее активной формой витамина D. Его предшественники обладают 1/1000 активности этой формы, поэтому при отсутствии почек витамин D утрачивает все свои влияния практически полностью.

Превращение 25-гидроксихолекальциферола в 1,25-дигидроксихолекальциферол требует участия паратгормона. При отсутствии паратгормона 1,25-дигидроксихолекальциферол практически не образуется. Следовательно, функциональные эффекты витамина D детерминированы активным влиянием паратгормона.

г) Концентрация ионов кальция управляет образованием 1,25-дигидроксихолекальциферола. На рисунке ниже показано, что концентрация 1,25-дигидроксихолекальциферола обратно пропорциональна концентрации кальция в плазме.

Влияние концентрации кальция в плазме на концентрацию в плазме 1,25-дигидроксихолекальциферола. На графике показано, что небольшое снижение концентрации кальция в плазме относительно нормы вызывает увеличение образования активной формы витамина D, что, в свою очередь, ведет к резкому увеличению всасывания кальция из кишечника

Это объясняется двумя причинами. Во-первых, сами ионы кальция оказывают небольшое влияние на предотвращение превращения 25-гидроксихолекальциферола в 1,25-дигидроксихолекальциферол. Во-вторых, что более важно, секреция паратгормона резко подавляется, если концентрация ионов кальция в плазме повышается до 9-10 мг/дл, поэтому, если концентрация кальция ниже этого уровня, паратгормон обеспечивает превращение в почках 25-гидроксихолекальциферола в 1,25-дигидроксихолекальциферол.

Читайте также:  Витамины для поддержания зрения у взрослых

При более высокой концентрации кальция, когда секреция паратгормона подавляется, 25-гидроксихолекальциферол превращается в другое соединение — 24,25-дигидроксихолекальциферол, который почти не обладает свойствами витамина D. Если концентрация кальция в плазме слишком высока, образование 1,25-дигидроксихолекальциферола резко снижается. Его отсутствие приводит к снижению всасывания кальция из желудочно-кишечного тракта, почек и костей, что нормализует концентрацию кальция в плазме.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Источник

Нарушение обмена кальция фосфора витамина d

Физиология паратгормона настолько сильно связана с витамином D и метаболизмом костной ткани, что рассматривать эти вопросы по отдельности, не потеряв их сути, невозможно. Графически взаимоотношения представлена на рисунке ниже. Паратгормон в первую очередь регулирует содержание ионов кальция в межклеточном пространстве. Витамин D контролирует всасывание кальция из пищи, а также косвенно отвечает за минерализацию костной ткани, которая содержит в себе 99% всего кальция организма.

«Можно ли считать кость органом?» Да! Поскольку костная ткань проявляется очень высокую метаболическую активность, а также содержит большие запасы кальция, она напрямую включена в процессы регуляции содержания кальция в межклеточном пространстве и плазме крови. Нормальная концентрация кальция в межклеточном пространстве необходима для выполнения множества клеточных функций, среди которых передача сигнала между клетками, секреция гормонов, нормальная работа мышц и нервов, поэтому необходимо строгое ее сохранение в определенных пределах.

Гипокальциемия ведет к нервно-мышечной гипервозбудимости; умеренное снижение уровня кальция проявляется гиперестезиями с положительными симптомами Хвостека и Труссо; тяжелая гипокальциемия ведет к развитию тетании, судорог и смерти. Гиперкальциемия проявляется летаргией, слабостью, комой и, наконец, смертью. Около 50% внеклеточного кальция находится в ионизированной форме, но точное соотношение зависит от pH. Содержание кальция внутри клеток на порядки меньше, чем вне ее, но некоторые органеллы, например, митохондрии, содержат в себе повышенные концентрации кальция. Колебания уровня внеклеточного ионизированного кальция обычно не превышают ± 10%.

а) Физиология обмена паратгормона. Паратгормон (паратиреоидный гормон, ПТГ, РТН) по химическому строению является 84-аминокислотным полипептидом; было выяснено, что за биологическую активность гормона ответственны первые 34 аминокислотных остатка паратгормона, именно они используются в клинической практике, например, в лечении остеопороза. Определение последовательности классического рецептора ПТГ показало его связь с G-белком и наличие семи трансмембранных сегментов, проявляющих одинаковое сродство как с паратгормоном, так и с ПТГ-родственным пептидом (ПТГ-рП).

Но ПТГ-рП не обладает таким же активирующим действием на 1-гидроксилазы почек, как сам ПТГ.

Наибольшее количество рецепторов к ПТГ находится в костной ткани и в почках, хотя в других органах они также присутствуют в меньших количествах. Недавно был обнаружен новый подвид ПТГ-рецептора, который связывается с карбоксильным остатком паратгормона. Ранее считалось, что данные рецепторы находятся в неактивном состоянии. Этот недавно обнаруженный рецептор не связывается с ПТГ-рП. Неизвестно, играет ли он какую-либо роль в метаболизме костной ткани или имеет какие-либо другие функции.

Клетки паращитовидных желез также экспрессируют рецепторы, чувствительные к кальцию. И они являются рецепторами, связанными с G-белками, и имеют в своем составе семь трансмембранных доменов. Данные рецепторы могут соединяться с различными катионами, но физиологически подходящими для них являются только двухвалентные катионы кальция и магния. Снижение уровня ионизированного кальция ведет к повышению секреции ПТГ, повышение уровня ионизированного кальция ведет к снижению секреции ПТГ.

Читайте также:  Морковь или репа витамины

Таким образом, и концентрация ионизированного кальция, и концентрация ПТГ в плазме крови колеблются лишь в узких пределах. Были описаны различные мутации данных рецепторов, некоторые из них приводят к повышению их активности, другие — к понижению. Данные мутации являются ключом к пониманию семейной гипокальциурической гиперкальциемии и некоторых гипокальциемических синдромов, например, семейного гипопаратиреоидизма.

Паратгормон (ПТГ) повышает резорбцию кальция в почках, усиливает резорбцию костной ткани, повышает активность D1-гидроксилазы почек. Эти механизмы помогают восстановить уровень кальция в плазме крови.

Пути метаболизма витамина D, паратгормона и костной ткани.
Предшественники витамина D синтезируются в коже под действием ультрафиолета. Превращение 25-ОН витамина D, депонированной формы витамина, в активную форму,
т.е. 1,25-(ОН)2 витамин D, регулируется паратгормоном. 1,25-(ОН)2 витамин D повышает всасывание кальция в желудочно-кишечном тракте.
Кальций и фосфор плазмы крови регулируют содержание паратгормона крови, а также участвуют в минерализации новообразованного костного матрикса.
При повышении уровня паратгормона усиливается резорбция костной ткани, поскольку это необходимо для поддержания необходимого уровня кальция в плазме,
а также стимулируется синтез 1,25-(ОН)2 витамина D почками.

б) Физиология обмена витамина Д. Синтез провитамина D (холекальциферола) происходит в коже из 7-дегидрохолестерола в результате фотокатализа под действием ультрафиолетовых лучей с длиной волны 290-315 нм. Ультрафиолетовые лучи именно с такой длиной волны могут преодолеть атмосферу, поэтому у жителей возвышенностей синтез провитамина D подвержен сезонным колебаниям. Синтез предшественников провитамина D тоже зависит от воздействия солнечных лучей, поэтому избыточное пребывание на солнце не приводит к гипервитаминозу.

Следовательно, скорость продукции провитамина D в долгосрочной перспективе не зависит от пигментации кожи; но она может снижаться у темнокожих лиц, которые мало подвергаются воздействию солнечных лучей. Провитамин D связывается с транскальциферином (витамин — D — связывающим белком) и транспортируется в печень, где в результате 25-гидроксилирования он превращается в кальцидиол.

Возможности получения витамина D с пищей очень ограничены, лишь крайне малое число продуктов содержит в себе витамин D. Молоко и молочные продукты, производимые в США и Европе, дополнительно обогащаются витамином D. Одна их порция содержит около 100 ME витамина. К сожалению, необогащенные молочные продукты и человеческое грудное молоко содержат крайне малое количество витамина. В желтке яйца содержится около 20 ME витамина D, в белке витамина D нет. Рыба является источником, богатым витамином D.

В порции консервированного тунца содержится 250 ME витамина, а в одной порции свежевыловленного лосося может содержаться до 1000 ME. В растительных продуктах витамина D нет, но он может содержаться в грибах в количестве до 1500 МЕ/100 г, если грибы росли в присутствии солнечного света.

Витамин D представляет из себя провитамин, активной формой которого является 1-25-(ОН)2 витамин D (кальцитриол). В норме кальцитриол продуцируется почками из витамина D, кальцидиола, в результате реакции 1-гидроксилирования. Активность 1-гидроксилазы почек контролируется ПТГ, поэтому уровень 1-25-(ОН)2 витамина D напрямую коррелирует с уровнем ПТГ. Высокий уровень ПТГ, как правило при гипокальциемии, стимулирует образование 1-25-(ОН)2 витамина D. В результате происходит повышение абсорбции кальция в кишечнике и нормализация его уровня в плазме крови.

Читайте также:  Лучшие витамины для студентки

При определенных патологических состояниях некоторые другие ткани также могут проявлять 1-гидроксилазную активность, иногда независимо от действия ПТГ.

в) Метаболизм минеральных веществ в костной ткани. Мы часто воспринимаем кости лишь как опорные структуры, но на самом деле костная ткань играет важную роль в метаболизме, выступая в качестве депо кальция, фосфатов и карбонатов, также она участвует в поддержании кислотно-щелочного равновесия. Матриксом кости является частично минерализованная ткань и специфические костные клетки. Костную систему человека разделяют на осевой скелет, к которому относят череп, позвоночный столб, грудину, ребра и таз, и на скелет конечностей, от их проксимальных отделов до кончиков пальцев.

Также костная ткань подразделяется на губчатую (трабекулярную), которая обладает высокой метаболической активностью, и кортикальную, которая имеет большую плотность и меньшую метаболическую активность. Изменения в кортикальной костной ткани наступают при тяжелых или длительно текущих заболеваниях. В осевом скелете преобладает содержание трабекулярной кости, в скелете конечностей — кортикальной.

К костным клеткам относят остеобласты, остеокласты и остеоциты. Остеобласты происходит из мезенхимальных стволовых клеток, они образуют соединительнотканный матрикс кости, который затем минерализуется, формируя новую костную ткань. Большинство остеобластов подвергаются апоптозу, но часть из них остается включенной в костный матрикс и превращается в остеоциты, а другая часть остается на поверхности кости, формируя надкостницу.

Трансформируясь в остеоциты, эти клетки образуют длинные отростки, которыми они создают щелевой контакт с соседними клетками и с клетками надкостницы. Остеоциты воспринимают механическое давление, оказываемое на кость, и играют важную роль в моделировании костной ткани. Остеокласты представляют собой крупные многоядерные клетки, происходящие из одноядерных макрофагов. Процесс дифференцировки клеток в остеокласты происходит под контролем ядер-ного фактора кВ (каппа-Б, RANKL), продуцирующего в ходе апоптоза остеобластов, и под контролем колониестимулирующего фактора макрофагов.

Остеокласты участвуют в резорбции костной ткани, разрушая минеральный компонент и коллагеновый матрикс костной ткани посредством протеолиза.

В норме костная ткань постоянно разрушается остеокластами и одновременно заново синтезируется остеобластами. Этот процесс получил название ремоделирования костной ткани. В здоровом организме процессы разрушения и синтеза костной ткани находятся в равновесии. Ремоделирование костной ткани крайне важно для поддержания структурной целостности (прочности) скелета, т. к. с ее помощью постоянно восстанавливаются микропереломы костей, возникающие от каждодневных физических нагрузок.

г) Кальций-чувствительные рецепторы. Как уже упоминалось выше, паращитовидные клетки экспрессируют кальций-чувствительные рецепторы. Первоначально данные рецепторы были выделены из паращитовидных клеток крупного рогатого скота, затем их наличие было подтверждено и у человека. Кроме паращитовидных желез, где они и были впервые обнаружены, данные рецепторы экспрессируются в почках, костях, желудке, легких, головном мозге и других тканях.

Как мутации, так и приобретенные дисфункции данных рецепторов могут стать причиной появления различных заболеваний, связанных как с повышением, так и с понижением кальция крови. Более подробно эти заболевания будут рассмотрены ниже.

Учебное видео расшифровки биохимического анализа крови

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Источник

Adblock
detector