Наиболее вредный для здоровья диапазон частот
Цель: показать, что низкие звуковые частоты ниже ПДУ, а также ряд бытовых и промышленных приборов с СВЧ ЭМП ниже ПДУ негативно влияют на человека.
Введение
Как известно, работа с виброприборами со среднечастотным диапазоном 30-125 Гц приводит к развитию сосудистых, нервно-мышечных, костно-суставных и других нарушений через 12–15 лет [12]. Законом установлено, что «условия работы с машинами, механизмами, установками, устройствами, аппаратами, которые являются источниками физических факторов воздействия на человека (такие как шум), не должны оказывать вредное воздействие на человека» [18].
Санитарными нормами установлены нормы допустимого шума в жилых зданиях в дневное и ночное время, превышение которого запрещается [1]. Допустимые уровни шума в жилых помещениях и на территории жилой застройки предусмотрены в [15].
Для звуковых волн в жилых и рабочих помещениях в СанПиН приняты ограничения [13]. Указывается, что, например, для творческой работы уровень шума частоты 31,5 Гц не должен превышать 86 дБ, а для частоты 500 Гц – 49 дБ и т.д.
В [10] указывается на необходимость спектрального анализа шумов в санитарном надзоре, но де исследуется действие резонансный частот.
В СССР был принят предельно допустимый уровень (ПДУ) плотности потока мощности (ППМ) – 10 мкВт/см2, в США – 10 мВт/см2. В ряде стран Западной Европы и США в качестве исходного критерия нормирования закладывался «принцип тепловой нагрузки», который учитывал лишь нарушение теплового гомеостаза организма. Этот подход был использован, например, в Великобритании, где до 1998 г. ПДУ для населения составлял 10 мВт/см, для детей допускалось облучение до 5 мВт/см2. В дальнейшем Великобритания перешла на общеевропейский стандарт, согласно которому для частотного диапазона свыше 400 МГц допускается облучение населения до 1 мВт/см2. Допустимые уровни воздействия на работников и требования к проведению контроля на рабочих местах для электромагнитных полей радиочастот изложены в ГОСТ 12.1.006-84.ПДУ в РФ для населения составляет 10 мкВт/см2[14].
Крайне высокочастотное (КВЧ) электромагнитное поле (ЭМП) ниже ПДУ может негативно влиять на организм [17]. Тем не менее КВЧ-поле используется при лечении самых разнообразных заболеваний, включая злокачественные новообразования [16].
При лечении туберкулеза и других заболеваний также широко используется как вспомогательная сантиметроволновая (СМВ), так и дециметроволновая (ДМВ) терапия. Применяются достаточно большие мощности, чтобы вызвать разогрев. Поскольку разогрев приводит к уменьшению глубины проникновения волн, в случае сантиметровых волн (чем выше частота, тем меньше глубина проникновения) используют слаботепловую СМВ-терапию. Для СМВ-терапии используют аппарат «Луч-4», с выходной мощностью 0,7–20 Вт и плотностью потока мощности 7-200 мВт/см2, что многократно превышает ПДУ. В связи с этим введены строгие правила техники безопасности.
Аппараты СМВ- и ДМВ-терапии должны помещаться в объем, изолированный материалом из хлопчатобумажной ткани с микропроводом. Излучатель во время процедур должен быть направлен в сторону наружной стенки. При контактном расположении излучателя портативные аппараты могут эксплуатироваться без экранирующей кабины, но они должны быть удалены от рабочего места медсестры на 2–3 м. Величина предельно допустимого уровня (ПДУ) плотности потока мощности (энергии): при облучении в течение всего рабочего дня – 10 мкВт/см2; при облучении не более 2 ч за рабочий день 100 мкВт/см2; при облучении не более 20 мин за рабочий день – 1 мВт/см2 (при условии использования защитных очков, типа ОРЗ-5). Следует избегать прямого воздействия дециметровых волн большой интенсивности на глаза и половые органы.
Для ДМВ-терапии приняты дополнительные правила: процедуры разрешается проводить только на стульях и кушетках, изготовленных из изоляционного материала; нижний край штор экранирующей кабины должен отстоять от пола не более чем на 2 см; края шторы, образующие вход в кабину, должны заходить друг за друга минимум на 10–15 см; пациент должен находиться как можно дальше от экранирующих поверхностей, чтобы максимально исключить действие не учитываемой рассеянной энергии; во время процедуры пациент не должен касаться труб водопровода, канализации и отопления; при контактной методике воздействия нельзя сильно прижимать излучатель к телу, его нужно устанавливать, чуть касаясь кожи или слизистой оболочки, сильное прижатие излучателя может привести к нарушению регионарного кровообращения или даже к ожогу, который может проявиться не сразу, а через 1–2 дня при последующих процедурах; рабочую поверхность излучателей необходимо обрабатывать дезинфицирующим раствором, защитный колпачок от полостных излучателей после проведения процедуры дезинфицируют путем кипячения в воде; в работе аппаратов необходимо делать перерывы на 10 мин. после каждого часа работы [3].
Опасные для человеческого организма сверхвысокие частоты ЭМП используются в ряде других приборов.
Радары работают на частотах 0.5 ГГц – 15 ГГц, системы спутниковой связи – примерно 2.38 ГГц, СВЧ-печи – 2.45 ГГц (хотя последнее следует исключить, они имеют несколько уровней защиты).
Развитие производства энергосберегающих ламп в направлении СВЧ было заброшено. Правда, не по причинам, связанным с безопасностью.
СВЧ-излучение ламп подсветки ЖК-мониторов – порядка 0,5 мВт, его не стоит опасаться также в виду того, что оно является паразитным, без фиксированной частоты.
Роутеры Wi-Fi – 2.4-2.4835 ГГц (с частотой шага 5МГц), 5.18-5.24ГГц и 5.745-5.825ГГц.
Системы сотовой связи используют частоты 0,463 ГГц – 1,99 ГГц. Стандарты GSM-850/900 нас не интересует. Стандарт GSM-1800: частоты передачи MS и приёма BTS uplink – 1.71-1.785 ГГц; downlink – 1.805-1.880 ГГц. Стандарт GSM-1900, используется в США, Канаде, отдельных странах Латинской Америки и Африки: частоты передачи MS и приёма BTS – 1.85-1.91 ГГц; 1.93-1.99 ГГц.
Для сетей 3-го поколения 3G/UMTS 2100 – 1.92-2.17 ГГц. Частоты 4G «Основа Телеком» LTE TDD – 2.3-2.34 ГГц. Частотный спектр для сетей 4-го поколения, 4G, LTE-частоты: (LTE FDD) в диапазоне 2.6 ГГц (band 7), за исключением сетей LTE TDD — МТС в Москве (2.6 ГГц, band 38) и «Вайнах Телеком» в Чеченской Республике (2.3 ГГц, band 40).
В НИОКР (со сверхвысокочастотным ЭПР и др.) исследователи могут использовать определенные сверхвысокие частоты, негативно влияющие на организм. Например, СВЧ ЭМП, модулированное частотно мегагерцами, воздействует на центральную и вегетативную нервные системы. Так, Алан Фрей обнаружил, действие такого излучения может вызвать ощущение укола иголкой, удара палкой или ощущение звука, причем даже у глухих (A. Frey, AnnalsofPhysics, 1960, 1962; см. также [19–23]).
В СВЧ-диапазоне работают процессоры современных компьютеров.
Celeron-450 – тактовая частота 0,45ГГц, Pentium (или 586, или Р5) – частоты: 60, 66, 75, 90, 100, 120, 133, 150, 166, 200 Мгц, PentiumPro — 150, 166, 180, 200 МГц, PentiumII – 233, 266, 300, 333, 350, 400, 450 Мгц,CeleronI – 266, 300, 333, 366, 400, 433, 466, 500, 533 МГцCeleronII — 566, 600, 633, 667, 700, 733, 766, 800, 850, 900. Pentium III – 533, 550, 600, 650, 667, 700, 733, 750, 800, 850, 866, 933 МГц, 1, 1.13, 1.2 ГГц и выше. Эти модели, а также более ранние, нас не интересуют.
Pentium IV– 1.3, 1.4, 1.5, 1.8, 1.9, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.06, 3.2, 3,4 и более ГГц.
Центральные процессоры, работающие с системной шиной с частотой 800 МГц, могут иметь следующие частоты: 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6 ГГц. С системной шиной 533 МГц – 2.26, 2.4, 2.53, 2.66, 2.8, 3.06 ГГц. С системной шиной 400 МГц – 1.7, 1.8, 1.9, 2.0, 2.2, 2.4, 2.5, 2.6 ГГц.
MobilePentium4-M– 1.4-2.6 ГГц, Pentium 4F – 3.2-3.6 ГГц, Pentium4F, D0, D – 2.8-3.4 ГГц
PentiumExtremeEdition – 3.2, 3.46, 3.73 ГГц.
Xeon: Nocona, Irwindale, Cranford, Potomac, PaxvilleDP (2.8 ГГц), PaxvilleMP (2.67–3.0 ГГц), Dempsey (2.67–3.73 ГГц).
Woodcrest – 1.6–3.0 ГГц; Clovertown – 1.6-2.66 ГГц; PentiumDual-Core – 1.60; 1.73; 1.86 ГГц,
(Xeon LV) (Sossaman) 2.0 ГГц
Intel Core2 имеет модели: Conroe (1.86–3.0ГГц), Allendale (1.6–2.6 ГГц), Conroe XE (2.93, 3.2 ГГц,), Merom (1.06–2.6 ГГц), Kentsfield (2.4–3.0 ГГц), Wolfdale/Yorkfield (2.53–3.33 ГГц),
PentiumDualCore имеет модели: Merom-2M (1.46–1.86 ГГц), Allendale (1.6–2.4 ГГц), Wolfdale (2.8–2.93 ГГц).
Intel Atom – 0.8–2.0 ГГц; Diamondville (1.6–1.66 ГГц).
Intel Core i3имеетмодели: Clarkdale (2.93–3.33 ГГц,), Arrandale (1.2–2.53 ГГц).
Intel Core i5 имеет модели: Lynnfield (2.4–2.8 ГГц), Clarkdale (3.2–3.6 Ггц), Arrandale (1.06–2.67 ГГц).
Intel Core i7, имеет модели: Gulftown (3.2–3.46 ГГц), Bloomfield (2.66–3.33 ГГц), Lynnfield (2.53–3.06 ГГц), Arrandale (1.06–2.8 ГГц).
IntelCorei7 ExtremeEditionимеетмодели: Bloomfield (3.2–3.33 ГГц), Gulftown (3.33–3.46 ГГц).
Intel Core i3 – 2.5–3.4 ГГц, Intel Core i5 — 2.3–3.3 ГГц, Intel Core i7 – 2.8–3.4 ГГц.
IntelCorei7 ExtremeEdition имеет модели: Bloomfield (3.2–3.33 ГГц), Gulftown (3.33–3.46 ГГц).
Итого, частоты процессоров охватывают набор частот 0,06 ГГц — 1,8 ГГц (мы увидим, что он нам не нужен) и дискретно-непрерывный диапазон 1,9–3,73 ГГц.
Потребляемая компьютером мощность – 60 Вт, подавляющий процент расходуется на тепло, на излучение остается порядка 0,5 Вт. Поскольку платы – многослойные, краски содержат тяжелые металлы, плюс экранирование металлического корпуса, на расстоянии 50 см от системного блока плотность потока мощности СВЧ излучения явно не превышает ПДУ.
Общая характеристика воздействия ЭМП компьютеров дана в [11], однако она не касается резонансного действия.
Анализ
Принятые 25.9.1985 (с изменениями от 18.1.1992 и 23.7.1993) правила обеспечивали недопущение выполнения в квартире, подвале или придомовой территории работ и иных действий, создающих повышенный шум и вибрацию. В новом Жилищном Кодексе отмечается лишь необходимость «осуществлять пользование жилыми помещениями с учетом соблюдения прав и законных интересов проживающих в жилом помещении граждан» [2].
Для звуковых волн по СанПиН – чем ниже частота, тем больше допустимая мощность [18]. Для 500 Гц, т.е. для пения в 1-й октаве, дневной допустимый уровень – 39 дБ, а для 31,5 Гц – 79 дБ. Для творческой деятельности, как мы видели выше, та же закономерность, хотя уже 55 дБ существенно снижает продуктивность умственной деятельности.
Частоты ниже 31,5 ГГц вообще не обозначены.
Между тем в случае резонансных инфразвуковых волн область резонанса для головы в положении сидя при вертикальных вибрациях располагается в зоне между 20–30 Гц, при горизонтальных – 1.5–2 Гц. Расстройство зрительных восприятий проявляется в частотном диапазоне между 60 и 90 Гц, что соответствует резонансу глазных яблок. Для органов, расположенных в грудной клетке и брюшной полости, резонансными являются частоты 3– 3.5 Гц. Для всего тела в положении сидя резонанс наступает на частотах 4–6 Гц.
Источник
Инфразвук и здоровье
Инфразвук(от лат.infra ниже, под) звуковые волны, имеющие частоту ниже воспринимаемой человеческим ухом. Поскольку обычно человеческое ухо способно слышать звуки в диапазоне частот 1620000Гц, за верхнюю границу частотного диапазона инфразвука обычно принимают 16 Гц. Нижняя же граница инфразвукового диапазона условно определена как 0,001 Гц.
Основные источники инфразвуковых колебаний природного происхождения: ураганы, штормы, цунами, извержения вулканов, землетрясения, сильные грозы и молнии, водопады.
Техногенные источники инфразвука: автомобильный и железнодорожный транспорт, трамваи, воздушный транспорт (самолеты, вертолеты), движущиеся части больших машин, турбин, большие вентиляторы и кондиционеры, работающие на малых оборотах, звуковоспроизводящая аппаратура с использованием низкочастотных динамиков.
Инфразвук подчиняется общим закономерностям, характерным для звуковых волн, однако обладает целым рядом особенностей, связанных с низкой частотой колебаний упругой среды:
— инфразвук имеет гораздо большие амплитуды колебаний, по сравнению с акустичес-кими волнами равной мощности
— инфразвук гораздо дальше распространяется, поскольку его поглощение в различных средах незначительно. При распространении в глубоком море и в атмосфере на уровне земли инфразвуковые волны частоты 10-20 Гц затухают на расстоянии 1000 км не более чем на несколько дБ (децибел). Из-за большой длины волны (на частоте 3,5 герца она равна 100 метрам) мало и рассеяние звука в естественных средах заметное рассеяние создают лишь очень крупные объекты — холмы, горы, крупные здания и др.
— благодаря большой длине волны для инфразвука характерно явление дифракции, вследствие чего он легко проникает в помещения и огибает преграды, задерживающие слышимые звуки.Известно, что звуки извержения вулканов, атомных взрывов могут многократно обходить вокруг земного шара, сейсмические волны могут пересекать всю толщу Земли
— инфразвук вызывает вибрацию крупных объектов вследствие резонанса.
Перечисленные особенности инфразвука затрудняют борьбу с ним, поскольку обычные способы борьбы с шумом (звукопоглощение, звукоизоляция, удаление от источника звука) против инфразвука малоэффективны.
Инфразвук оказывает раздражающее действие, особенно на психоэмоциональную сферу, и вызывает ощущения вибрации грудной и брюшной стенок, нарушение ритма дыхания, закладывание и давление в ушах, головную боль, головокружение, тошноту, затруднение при глотании, модуляцию речи, тремор рук, озноб, ощущение необъяснимого страха и беспокойства, сменяющееся чувством усталости, утомления, вялости и рассеянности. Это может происходить при уровнях звукового давления от 120 дБ. Субъективные ощущения нарастают с увеличением уровня инфразвука.
В результате длительного действия инфразвука с уровнями, близкими к производственным (90-120 дБ), развивается астенизация, снижается умственная работоспособность, появляются вегетоневротические симптомы: раздражительность, тошнота, нервозность. Несмотря на то, что частотный диапазон инфразвука находится ниже порога слышимости, по мнению большинства ученых, инфразвуковые колебания высоких уровней воспринимаются органом слуха.
Установлено снижение слуховой чувствительности в области низких речевых частот у лиц, длительно работающих в условиях воздействия инфразвука. Следует отметить, что инфразвук может маскироваться колебаниями звуковой частоты. Основываясь на данных по временному смещению порогов слуха (ВСП) при действии инфразвука, можно предположить, что этот фактор не опасен в плане развития профессиональной тугоухости при уровнях ниже 130 дБ
Нарушение функции равновесия отмечено у компрессорщиков и водителей пассажирского автотранспорта, работающих в условиях воздействия инфразвука. Со стороны сердечно-сосудистой системы при воздействии инфразвука отмечается нарушение частоты сердечных сокращений, в частности, брадикардия, увеличение диастолического давления.
Данные по оценке влияния инфразвука на организм человека, классифицированные по зонам риска для здоровья человека, показывают, что его биологическое действие можно условно разделить на ряд зон: смертельных уровней и экстремальных эффектов высокого риска здоровью даже при периодических воздействиях высокого риска при кратковременных воздействиях выраженного прогрессирования риска здоровью умеренного риска, особенно при сочетанном действии с другими физическими факторами (общая и локальная вибрации, шум) неясных, стертых, трудно обнаруживаемых эффектов экологически неблагоприятного действия на население жилой зоны.
При 180-190 дБ действие инфразвука смертельно вследствие разрыва легочных альвеол. Другие зоны интенсивных кратковременных воздействий вызывают синдром резко выраженного инфразвукового дискомфорта, предел переносимости которого добровольцами наблюдается при 154 дБ. Исследования, проведенные на добровольцах, показывают, что НАК, в том числе и инфразвукового диапазона продолжительностью от 25 с до 2 мин с УЗД от 145 до 150 дБ в диапазоне частот от 1 до 100 Гц, вызывал у них ощущение вибрации грудной стенки, сухость в полости рта, нарушение зрения, головную боль, головокружение, тошноту, кашель, удушье, беспокойство в области подреберий, звон в ушах, модуляцию звуков речи, боли при глотании и некоторые другие признаки нарушений в деятельности организма.
Предельно допустимые уровни инфразвука регламентируются санитарными нормами СН 2.2.4/2.1.8.583-96 Инфразвук на рабочих местах, в жилых и общественных помещениях и на территории жилой застройки, СанПиН 2.1.2.2645-10 Санитарно-эпидемиологические требования к условиям проживания в жилых зданиях и помещениях.
Виды работ, помещений
Уровень звукового давления, дБ, в октавных полосах со среднегеометрическими частотами, Гц
Источник