Меню

Над восстановленная форма витамина

НИКОТИНАМИДАДЕНИНДИНУКЛЕОТИД

Никотинамидадениндинуклеотид [НАД, NAD + , NADH; син.: дифосфопиридиннуклеотид, ДПН, устар.— кофермент I, KoI, козимаза, кодегидр(оген)аза I] — кофермент, присутствующий во всех живых клетках и входящий, наряду с никотинамидадениндинуклеотидфосфатом [НАДФ, NADP+, NADPH; син.: трифосфопиридиннуклеотид, ТПН, устар.— кофермент II (KoII), фосфокозимаза, кодегидр-(оген)аза II], в состав ферментов группы дегидрогеназ, катализирующих важнейшие окислительно-восстановительные реакции энергетического и пластического обмена. Наиболее важная биол, функция никотин-амидных коферментов, т. е. НАД и НАДФ, заключается в их способности переносить электроны и протоны от окисляющихся субстратов к кислороду в процессе клеточного дыхания (см. Окисление биологическое). Определение скорости восстановления или окисления никотинамидных коферментов имеет большое значение в биохимии и медицине, т. к. позволяет определить активность многих НАД(Ф)-зависимых дегидрогеназ, а также других важнейших ферментов в сопряженных системах с использованием дегидрогеназ, что при целом ряде заболеваний имеет существенное диагностическое значение.

НАД был открыт в 1905 г. в дрожжевом соке англ. биохимиками Харденом (A. Harden) и Янгом (W. Young), а НАДФ обнаружен в 1931 г. в крови лошади. Впервые НАД и НАДФ были выделены и идентифицированы О. Варбургом и X. Эйлер-Хельпином; структура НАДФ установлена в 1934 г., а НАД — в 1936 г.

Молекула НАД представляет собой своеобразный динуклеотид, построенный из аденинрибонуклеотида и никотинамидрибонуклеотида — каталитически активной группировки. Оба нуклеотида соединены фосфо-ангидридным мостиком. НАДФ отличается от НАД наличием третьего остатка фосфорной к-ты в положении 2′ рибозы аденилового нуклеотида.

Каталитической активностью обладают только так наз. (3-изомеры обоих динуклеотидов, в к-рых пуриновое и никотинамидное ядра пространственно сближены.

Окисленные формы никотинамидных коферментов, обозначаемые соответственно НАД+ и НАДФ+, довольно устойчивы в кислых и неустойчивы в щелочных р-рах (особенно при нагревании), а восстановленные формы (НАД* H и НАДФ-H) относительно устойчивы в щелочных и быстро разрушаются в кислых р-рах. Различная устойчивость коферментов в кислой и щелочной средах используется при раздельном определении их окисленных и восстановленных форм.

Основным источником для препаративного получения НАД являются пекарские дрожжи, а НАДФ — печень овец или свиней. Выделение НАД+ и НАДФ+ состоит из экстрагирования теплой водой суспензии дрожжей или гомогената животных тканей, осаждения солями серебра или ртути и хроматографии на ионообменных смолах. Восстановленные формы коферментов получают путем хим. или ферментативного восстановления их окисленных форм.

Содержание окисленных и восстановленных форм НАД и НАДФ и соотношение между ними в разных тканях млекопитающих весьма различно. В большинстве тканей НАД присутствует в значительно больших количествах, чем НАДФ. В нормально функционирующей клетке окисленная форма НАД всегда преобладает над восстановленной, тогда как НАДФ присутствует в основном в восстановленной форме. Нуклеотидные коферменты обнаружены во всех клеточных фракциях; в печени их содержание особенно высоко в растворимой фракции (цитозоле). Содержание никотинамидных коферментов, соотношение между их окисленными и восстановленными формами, а также соотношение между содержанием НАД и НАДФ являются показателями активности процессов метаболизма в тканях, в известной мере характеризующими их функц, состояние. В эмбриональной мышце содержание НАД значительно ниже, а НАДФ — выше, чем в мышцах взрослого животного. При атрофии мышц после денервацип наблюдается снижение содержания НАД и повышение содержания НАДФ. При кислородной недостаточности отмечается снижение содержания окисленных форм НАД и НАДФ. В тренированных мышцах величина отношения НАД+ / НАД-H после 10-минутной нагрузки выше, чем в нетренированных. Факторы, вызывающие нейрогенную дистрофию, приводят к снижению количества НАД+ и повышению количества НАДФ-H в миокарде и мозге экспериментальных животных.

Окислительно — восстановительные реакции, катализируемые дегидрогеназами и протекающие с участием НАД или НАДФ, могут быть изображены в виде уравнения: АН2 -f-+ НАД(Ф)+ ^А + НАД(Ф) • H + -j- Н+ (где АН2 — восстановленная, а А — окисленная форма субстрата) и сводятся к обратимому переносу двух восстановительных эквивалентов от субстрата к окисленной форме никотинамидного кофермента. При этом один эквивалент присутствует в восстановленном коферменте в виде атома водорода, а другой — в виде электрона (катион второго атома водорода переходит в среду в виде свободного H + -иона). В результате этого при восстановлении НАД(Ф) реакция р-ра смещается в кислую сторону, а при окислении— в щелочную. При восстановлении кофермента водород и электрон (в виде гидрид-иона; :Н“) переносятся в четвертое положение пиридинового кольца; ферментативное присоединение, а также отщепление водорода происходит стереоспецифич-но — над или под плоскостью этого кольца, в зависимости от специфичности соответствующей дегидрогеназы.

НАД-зависимые дегидрогеназы участвуют преимущественно в катаболических процессах (напр., в процессе клеточного дыхания), а НАДФ-зависимые в анаболических процессах (напр., в восстановительных биосинтетических реакциях). Обнаружено ок. 349 НАД(Ф)-зависймых оксидоредуктаз, обычно специфичных либо в отношении НАД [митохондриальная изоцитратдегидроге-наза, глицеральдегидфосфатдегидро-геназа, дигпдролипоилдегидрогеназа, лактатдегидрогеназа (см.), алкогольдигидрогеназа (см.), малатдегидрогеназа (см.) и др.], либо в отношении НАДФ (цитоплазматическая изоцитратдегидрогеназа, глюкозо-б-фосфат—дегидрогеназа и др.), и лишь немногие ферменты (напр., нек-рые глутаматдегидрогеназы) могут использовать как НАД+, так и НАДФ+ . Связь никотинамидных коферментов с белковой частью фермента часто (но не всегда) является легко диссоциирующей; в таких случаях НАД и НАДФ осуществляют роль подвижных промежуточных переносчиков водорода, объединяющих и связывающих между собой различные окислительно-восстановительные акты.

Читайте также:  Авитаминоз водорастворимых витамин это

Принимая водород непосредственно от субстратов (углеводов, аминокислот, жирных к-т и т. д.) и передавая их переносчикам с более высоким окислительно-восстановительным потенциалом (во многих случаях флавопротеидам), НАД является первым звеном в цепи переносчиков водорода в процессе биол, окисления. Стандартный окислительно-восстановительный потенциал Е\ пары НАД (Ф)+ /НАД (Ф)-Н равен — 0,32 в. Окисление молекулы НАД-H в дыхательной цепи позволяет накопить в процессе дыхательного фосфорилирования (см.) три молекулы АТФ; при этом водород окисляется молекулярным кислородом до воды: НАД • H -4-

+ Н+ + 1/2 02-> НАД+ + Н20.

НАД осуществляет также перенос водорода между различными окисляющимися и восстанавливающимися субстратами (напр., в процессе гликолиза, при превращении тестостерона в андростерон и т. д.).

Окисление НАДФ-H происходит гл. обр. в процессах восстановительных биосинтезов: при синтезе жирных к-т, углеводов (напр., в темновых реакциях фотосинтеза), при восстановительном аминировании а-кетоглутаровой к-ты и т. д. Прямое окисление НАДФ* H в дыхательной цепи возможно при действии специфической НАДФ-цитохромредуктазы. Непрямое окисление НАДФ- II в дыхательной цепи может осуществляться после переноса водорода на НАД+ трансдегидрогеназами, катализирующими обратимую реакцию НАД. H + НАДФ+ ^НАД + НАДФ-H.

Восстановленные молекулы НАДФ образуются гл. обр. при окислении в цитоплазме глюкозо-6-фосфата в пентозном цикле, при окислении малата до пирувата и CO2 малатдегидрогеназой, а также при фото-восстановлении в световых реакциях фотосинтеза.

Биосинтез НАД и НАДФ осуществляется многоферментной системой, пространственно разобщенной в клеточных структурах. В большинстве тканей НАД синтезируется как из никотинамида, так и из никотиновой кислоты (см.). В печени и в почках содержатся ферментные системы, способные осуществлять синтез никотинамида из триптофана и дальнейшие стадии синтеза НАД. Образование НАДФ происходит путем фосфорилирования НАД за счет непосредственного переноса фосфатного остатка от АТФ, катализируемого НАД-киназой (КФ 2.7.1.23). Нарушение биосинтеза НАД происходит при недостаточности витамина РР (ниацина), являющегося предшественником этого кофермента. Расщепление никотинамидных коферментов осуществляется несколькими ферментными системами, включающими НАД-гликогидролазу (КФ 3.2. 2.5), пирофосфатазу (КФ 3.6.1.1), НАД-пирофосфорилазу (КФ 2.7.7.1), аденозиндезаминазу (КФ 3.5.4.4), щелочную фосфатазу (КФ 3.1.3.1) и др.

Для количественного определения никотинамидных коферментов используют несколько методов. Наиболее распространен спектрофотометрический метод (см. Спектрофотометрия), основанный на том, что для окисленных форм этих коферментов характерны интенсивная полоса поглощения при 260 нм и отсутствие поглощения в более длинноволновой области спектра, восстановление же НАД и НАДФ сопровождается появлением полосы поглощения с максимумом при 340 нм. Определение НАД и НАДФ флюориметрическим методом (см. Флюориметрия) является наиболее чувствительным (позволяет определять эти коферменты в концентрации 10

8 М); оно основано на том, что восстановленные никотинамидные коферменты, в отличие от их окисленных форм, флюоресцируют, давая при возбуждении их светом с длиной волны 340 нм максимум флюоресценции при 480 нм. Метод pH-метрии (см. Потенциометрическое титрование) сводится к измерению величины pH среды, к-рая изменяется при восстановлении или окислении коферментов.

Источник

Никотиновая кислота

НИАЦИН (ВИТАМИН РР, ВИТАМИН В3, НИКОТИНОВАЯ КИСЛОТА)

ХИМИЧЕСКИЕ И ФИЗИЧЕСКИЕ СВОЙСТВА

Ниацин (никотиновая кислота, витамин PP, витамин B3) – это водорастворимый витамин, участвующий во многих окислительно-восстановительных реакциях, образовании ферментов и обмене липидов и углеводов в живых клетках. Хим. формула ниацина — C6H5NO2

Никотиновая кислота является β-пиридин-карбоновой кислотой. В химически чистом виде представляет собой бесцветные кристаллы игольчатой формы, легко растворимые в воде и спирте. Никотиновая кислота термостабпльна и сохраняет свою биологическую активность при кипячении и автоклавировании. Устойчива к воздействию света, кислорода воздуха и щелочей. Амид никотиновой кислоты С6Н6N2О обладает теми же биологическими свойствами, что и никотиновая кислота. В организме человека и животных никотиновая кислота превращается в амид никотиновой кислоты и в таком виде входит в состав тканей организма.

Химическая формула ниацина — C6 H5 N O2

Никотиновая кислота называется «витамин B3», так как это – третий по счету обнаруженный витамин группы В. Исторически его называют «витамин РР» или «витамин Р-Р», оба названия являются производными от термина «пеллагра-профилактический фактор», т.е. Preventive pellagra, что означает «предотвращающий пеллагру». Слово «пеллагра» происходит от итальянских слов pelle agra, в переводе на русский язык — шершавая кожа, что характеризует один из симптомов этой болезни.

Ниацин является одним из пяти витаминов, отсутствие которых в рационе человека связано с пандемией. Никотиновая кислота используется уже более 50 лет для увеличения уровня ЛПВП (липопротеинов высокой плотности) в крови, а также, как было выяснено в ряде контролируемых испытаний на человеке, может применяться для уменьшения риска сердечно-сосудистых заболеваний.

Читайте также:  Можно выпивать когда колишь витамины

ФУНКЦИИ НИАЦИНА В ОРГАНИЗМЕ. УЧАСТИЕ В ОБМЕННЫХ ПРОЦЕССАХ

Никотиновая кислота благоприятно влияет на нервную и сердечнососудистую системы; поддерживает в здоровом состоянии кожу, слизистую оболочку кишечника и ротовой полости, нормализует работу желудка и поджелудочной железы.

Ниацин участвует в углеводном, энергетическом и жировом обмене, оказывает антисклеротическое действие, предотвращает возникновение острого инфаркта миокарда и стенокардии, улучшает общее состояние организма человека, уменьшает головные боли, улучшает пищеварение. Как и другие витамины группы B, ниацин нужен организму человека для производства ферментов, обеспечивающих клетки энергией. Этот витамин принимает участие более чем в 50 ферментативных реакций и имеет значительное влияние на здоровье кожи, слизистой пищеварительного тракта, языка, на образование эритроцитов – красных кровяных телец.

Регуляция холестерина и кровоснабжение

Витамин В3 необходим для поддержания функций многих ферментов. Употребление ниацина является крайне эффективным для нормализации уровней липидов в крови. Он снижает концентрацию общего холестерина, аполипопротеина А, триглицеридов, липидов низкой плотности и увеличивает уровень липидов высокой плотности, которые обладают антиатерогенными свойствами (препятствуют образованию атеросклеротических бляшек в сосудах).

Никотиновая кислота оказывает стимулирующее влияние на функцию органов кровотворения, усиливая, процесс образования эритроцитов и в меньшей степени лейкоцитов. Также он обладает гиполипидемическим действием, расширяет мелкие кровеносные сосуды и улучшает микроциркуляцию, в т.ч. повышает фибринолитическую активность крови и препятствует тромбообразованию, уменьшая агрегацию тромбоцитов.

Окислительно-востановительный потенциал

Всасывание поступившей с пищей никотиновой кислоты происходит в желудке, двенадцатиперстной кишке и тонком кишечнике. Всосавшаяся никотиновая кислота поступает в кровь, где она превращается в никотинамид, и далее в печень. В печени никотинамид превращается в дифосфонуклеотиды и трифосфонуклеотиды и откладывается в виде указанных соединений. Кислота никотиновая — является простетической группой кодегидразы I и кодегидразы II — ферментов, переносящих водород и осуществляющих окислительно-восстановительные процессы. Кодегидраза II участвует и в транспортировке фосфата. Синтез кодегидраз происходит, главным образом, в печени. В крови никотиновая кислота содержится преимущественно в эритроцитах.

Т.е. витамин В3 является предшественником молекул, которые играют важную роль в окислительно-восстановительных реакциях в клетках; он может способствовать антиоксидантному и метаболическому эффекту в качестве ферментного кофактора. Ниацин в организме человека превращается в никотинамид, который входит в состав коферментов некоторых дегидрогеназ ( группы ферментов из класса оксидоредуктаз ): никотин-амид-аденин-динуклеотида ( НАД ) и никотин-амид-аденин-динуклеотид-фосфата ( НАДФ ).

В данных молекулярных структурах никотинамид выступает в роли донора и акцептора электронов и участвует в жизненно важных окислительно-восстановительных реакциях, которые катализируются десятками различных ферментов. В качестве кофактора энзимов никотинамид задействован в метаболизме белков, жиров и углеводов, пуриновом обмене, тканевом дыхании, распаде гликогена.

Ниацин участвует также в репарации ДНК, т.е. в исправлении ее химических повреждений и разрывов. Т.е. этот витамин задействован в восстановлении г енетического ущерба (на уровне РНК и ДНК), нанесенного клеткам организма лекарствами, мутагенами, вирусами и др. физическимии и химическими агентами.

Ниацин и гормоны

Данный витамин участвует в производстве стероидных гормонов в надпочечниках. Он необходим для образования различных гормонов, в том числе половых. Ниацин участвует в процессе, регулирующем ответ организма на инсулин – гормон, который отвечает за транспортировку глюкозы в клетки, а также ее хранение в мышцах и печени.

Влияние на нервную систему

Ниацин называют «витамином спокойствия» — он стабилизирует работу нервной системы и защищает ее от срывов и депрессий. Никотиновая кислота оказывает влияние на нормальное функциональное головного мозга, оказывая активирующее влияние на функции коры больших полушарий. Установлено, что в головном мозгу содержится наибольшее по сравнению с другими органами количество дифосфопиридиннуклеотида, что позволяет головному мозгу использовать этот витамин в большом количестве.

Влияние на органы пищеварения

Никотиновая кислота повышает общую кислотность желудочного содержимого и содержание свободной соляной кислоты, а также часовое напряжение, т. е. количество сока, выделяемого за час.

Никотиновая кислота усиливает моторную функцию желудка и ускоряет эвакуацию его содержимого при нормальной секреции. При РР-гиповитаминозе часто наблюдается понос, который объясняют расстройством функции кишечника в результате поражения его нервного аппарата. Никотиновая кислота также стимулирует внешнюю секрецию поджелудочной железы, повышая содержание в панкреатическом соке ферментов (трипсин, амилаза, липаза).

Печень более богата никотиновой кислотой, чем другие органы. Никотиновая кислота положительно влияет на некоторые функции печени. При заболеваниях печени, сопровождающихся нарушением углеводного обмена (болезнь Боткина и др.), никотиновая кислота способствует нормализации процессов синтеза и распада гликогена и накоплению, его в печени; благодаря этому быстрее нормализуется гликорегулирующая функция печени.

ПРИЧИНЫ СНИЖЕНИЯ УРОВНЯ НИАЦИНА В ОРГАНИЗМЕ

Недостаточное поступление витамина В3 в организм:

  • болезнь Хартнупа (наследственное заболевание, сопровождающееся нарушением усвоения некоторых аминокислот, в том числе триптофана);
  • неполноценное и несбалансированное питание (недостаточное содержание белка);
  • заболевания ЖКТ, сопровождающиеся синдромом мальабсорбции (патология поджелудочной железы, целиакия, персистирующая диарея, болезнь Крона);
  • состояние после оперативного лечения заболеваний ЖКТ (например, гастрэктомии).
Читайте также:  Хорошие витамины для выпадающих волос

Важное замечание

Дефицит витамина В3 часто сочетается с недостаточностью пиридоксина (витамина В6) и рибофлавина (витамина В2).

Состояния повышенного использования ниацина в метаболизме:

длительная лихорадка; хронические инфекции; заболевания гепатобилиарной области (острые и хронические гепатиты, цирроз печени); гипертиреоз; карциноидные опухоли (снижение уровня ниацина связано с повышенным потреблением триптофана для синтеза серотонина); алкоголизм; беременность (особенно на фоне никотиновой и лекарственной зависимости, многоплодия); период лактации.

СИМПТОМЫ ДЕФИЦИТА НИКОТИНОВОЙ КИСЛОТЫ

РР-ГИПО- И АВИТАМИНОЗ

Дефицит никотиновой кислоты в организме может быть полным и неполным.

На первом этапе при неполном дефиците витамина РР развиваются различные неспецифические симптомы, являющиеся признаками неблагополучия в организме. Однако в данном случае в тканях имеется еще небольшое количество никотиновой кислоты, которое обеспечивает протекание процессов жизнедеятельности, а потому специфические симптомы и тяжелые нарушения работы различных органов отсутствуют. На втором этапе, когда никотиновая кислота, имеющаяся в тканях, израсходуется, возникает абсолютный дефицит витамина, который характеризуется развитием специфического заболевания – пеллагры, и еще целым рядом тяжелых нарушений функционирования различных органов.

Пеллагра — заболевание, являющееся следствием длительного неполноценного питания (недостаток витамина PP и белков, в особенности содержащих незаменимую аминокислоту триптофан) — проявляется диареей, дерматитом, деменцией и без лечения опасно для жизни.

Неполный дефицит никотиновой кислоты проявляется следующими симптомами:

Вялость; Апатия; Сильная утомляемость; Головокружение; Головная боль; Сердцебиение; Раздражительность; Бессонница; Сухость кожи; Запоры; Снижение сопротивляемости организма к инфекционным заболеваниям; Ухудшение аппетита; Потеря веса; Бледность кожных покровов и слизистых оболочек.

При длительно существующем или полном дефиците витамина РР развивается пеллагра

Возможно развитие пеллагры даже при удовлетворительном питании вследствие нарушения всасывания в кишечнике, что наблюдается при энтероколитах различной этиологии, после хирургического вмешательства (например, частичной резекции тонкого кишечника), длительного охлаждения, физического или умственного перенапряжения.

В настоящее время выяснено, что в возникновении пеллагры играет роль ряд факторов, в том числе и недостаток витаминов В1, В2, В6 и др., а не только недостаток витамина РР в пище. Для предупреждения пеллагры важно достаточное содержание в пищевом рационе белков и, в частности, содержащих триптофан, поскольку из него образуется никотиновая кислота. Однако для полного обеспечения потребности в витамине РР и предупреждения пеллагры он должен постоянно поступать в организм с пищей.

Поражение кожи при пеллагре представляет собой напоминающую солнечный ожог эритему, особенно отчетливо выраженную на открытых для солнечных лучей частях тела; постепенно усиливается пигментация и кожа утолщается. Возникает тошнота, запоры или диарея, язык становится ярко-красным, появляется апатия, усталость, депрессия, головная боль, дезориентация, иногда больной даже теряет память. Развитию деменции с бредом предшествуют повышенная раздражительность, депрессивное состояние и анорексия.

Полный дефицит никотиновой кислоты — развитие пеллагры проявляется следующими симптомами:

Хронические поносы (стул до 3 – 5 раз в день, имеющий жидкую водянистую консистенцию, но не содержащий примесей крови или слизи); Потеря аппетита; Ощущение тяжести в области желудка; Изжога и отрыжка; Ощущение жжения во рту; Повышенная чувствительность десен; Слюнотечение; Покраснение слизистых оболочек; Отечность губ; Трещины на губах и коже; Многочисленные воспаления на коже; Выступающие в виде красных точек сосочки языка; Глубокие трещины на языке; Красные пятна на коже кистей рук, лица, шеи и локтей; Отек кожи (кожный покров болит, чешется и на нем появляются пузыри); Слабость в мышцах; Шум в ушах; Головные боли; Ощущение онемения и боли в конечностях; Ощущение ползания «мурашек»; Шаткая походка; Повышенное артериальное давление; Деменция (слабоумие); Депрессия; Язвы.

В данном списке перечислены все возможные признаки пеллагры, однако наиболее типичными и яркими проявлениями этого заболевания являются деменция (слабоумие), диарея (понос) и дерматит.

Если у человека присутствуют все три признака – диарея, деменция и дерматит в той или иной степени выраженности, то это однозначно свидетельствует о дефиците витамина РР, даже если другие вышеперечисленные симптомы отсутствуют.

передозировка

При длительном поступлении очень больших количеств никотиновой кислоты в организм у человека могут появиться обмороки, зуд кожи, нарушения сердечного ритма и расстройства работы пищеварительного тракта. Иных симптомов интоксикации избыточное потребление витамина РР не вызывает, поскольку никотиновая кислота малотоксична.

СУТОЧНАЯ ПОТРЕБНОСТЬ В НИАЦИНЕ

Физиологические потребности в ниацине согласно Методическим рекомендациям МР 2.3.1.2432-08 о нормах физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации:

  • Верхний допустимый уровень потребления – 60 мг/сутки.
  • Физиологическая потребность для взрослых – 20 мг/сутки.
  • Физиологическая потребность для детей – от 5,0 до 20,0 мг/сутки.

Таблица 1. Рекомендуемая суточная норма потребления ниацина (Витамина РР) в зависимости от возраста (мг):

Источник

Adblock
detector