Меню

Микроорганизмы используются для производства витаминов

Микроорганизмы используются для производства витаминов

Микробы — производители витаминов

Мы уже знаем, что витамины — важные компоненты ферментов, без которых последние не могли бы выполнять свои биохимические функции. Поэтому каждая клетка, каждый организм нуждаются в витаминах. Нуждаемся в них и мы. Отсутствие в пище хотя бы одного из витаминов приводит к нежелательным расстройствам организма, как это видно из таблицы 13.


Таблица 13

Всем известно, что витамины находятся в различных пищевых продуктах, но мало кто знает, что некоторые витамины (C, D, группы B) получают в настоящее время заводским путем с помощью микробов.

Витамин B2 (рибофлавин) получают из продуктов жизнедеятельности дрожжей. Кроме них, для этой цели используются также грибы Eremothecium ashbyii и Ashbya gossypii, паразиты хлопчатника и других растений. Паевою «вредительскую» деятельность они расплачиваются с нами, производя столь необходимый нам рибофлавин.

В 1 л жидкой культуральной среды, в которой выращиваются эти микроскопические грибы, содержится около 1 г рибофлавина, столько же, сколько в 500 л коровьего молока. Теперь эти микробы — продуценты витамина B2 выращиваются в огромных 100 000-литровых емкостях, откуда через каждые 4-5 дней выделяют по 100 кг витамина. Достаточно сказать, что такое количество рибофлавина содержится в 50 миллионах литров молока.

Накопление новых данных о витаминах сопровождалось и расширением наших сведений об их влиянии на микроорганизмы. Во многих случаях микробы оказали помощь в выделении витаминов и в их химическом изучении. Приведем пример из недавнего прошлого, показывающий, каким образом микробы способствовали решению загадки, связанной со злокачественнным малокровием.

Злокачественное малокровие — болезнь, выражающаяся в пониженной выработке организмом красных кровяных телец (эритроцитов). Уже давно при лечении этой болезни применяли препараты, выделяемые из печени и содержащие химически неизвестное в те времена вещество. В 1948 году было обнаружено, что это вещество влияет на рост молочнокислых бактерий Lactobacillus lactis. Их размножение зависело от присутствия в питательной среде какого-то стимулирующего вещества. Констатация этого факта была первым шагом к тому, чтобы при помощи бактерий выделить из печени это вещество в чистом виде. Теперь-то мы знаем, что этим стимулятором является витамин B12.

Сведения о новом витамине постепенно пополнялись. Оказалось, что его продуцентами являются многие бактерии и актиномицеты; некоторые из них (как, например, упомянутые молочнокислые бактерии) должны получать его для своего роста и развития в уже готовом виде. Микробы, обитающие в одном из отделов желудка жвачных (в рубце), как нам уже известно, сами вырабатывают витамин В12.

Дальнейшие исследования показали, что некоторые актиномицеты — продуценты антибиотиков — образуют значительные количества этого витамина. В настоящее время в промышленном масштабе витамин В12 вырабатывается в основном при помощи этих микроорганизмов. Для его получения используют также микроорганизмы, живущие в осадках сточных вод.

Ученым удалось установить химический состав нового витамина. Строение его молекулы имеет много общего со структурой красящего вещества крови (гемоглобина) и хлорофилла. В состав молекул этих веществ входят атомы металлов: в молекуле гемоглобина содержится атом железа, в молекуле хлорофилла — атом магния, а в молекуле витамина B12 — атом кобальта (этот витамин иногда называют цианокобаламином).

Витамин B12 используется для приготовления чистого медицинского препарата, а в неочищенном виде его вместе с некоторыми антибиотиками добавляют к кормам домашних животных.

Микробы, вырабатывающие витамин B12, однако, не столь усердны, как продуценты рибофлавина. Но химикам стоит поработать над усовершенствованием метода выделения витамина B12 даже в том случае, если на миллион частей культуральной среды будет получено лишь пять частей витамина. Ведь важность витамина огромна: суточной его дозы (1 миллионная часть грамма) вполне хватает для обновления крови при некоторых видах малокровия, вызванных недостатком этого витамина или неспособностью организма получать его из пищи.

В последние годы началось промышленное производство еще одного витамина — биотина. Вырабатывают это вещество дрожжи из рода Sporobolomyces. Биотин используется в медицине, а в неочищенном виде добавляется в корма.

Дрожжи Saccharomyces carisbergensis используются в биологическом производстве эргостерина, из которого при помощи ультрафиолетовых лучей получают витамин D. Эргостерин, как мы помним, был выделен еще в прошлом веке из зерен злаков, пораженных спорыньей. В 1927 году было установлено, что эргостерин под действием ультрафиолетовых лучей преобразуется в витамин D и приобретает свойства, очень важные для лечения рахита.

Читайте также:  Витамины витому для женщин

Образование подобных веществ характерно и для бактерий. Так, уксуснокислые бактерии применяются при производстве витамина C. Основным сырьем для его получения служит глюкоза, которая химическим путем превращается в соединение, называемое сорбитом. Затем сорбит при помощи уксуснокислых бактерий превращается в сорбозу, а из нее уже химическим путем получают витамин C.

Источник

Характеристика микроорганизмов, осуществляющих синтез витаминов

Микроорганизмы содержат много витаминов, которые чаще всего входят в состав ферментов. Состав и количество витаминов в биомассе зависят от биологических свойств данной культуры микроорганизмов и условий культивирования. Некоторые витамины микроорганизмы синтезируют, другие напротив усваивают в готовом виде из окружающей среды. Культура, способная синтезировать какой-либо витамин, называется автотрофной по отношению к нему, если культура не способна синтезировать данный витамин, она является авто-гетеротрофной.

Витамины синтезируют в основном химическим путем или получают из естественных источников. Однако эргостерин, рибофлавин (В2), витамин В12 и аскорбиновую кислоту (микроорганизмы используются как селективные окислители сорбита в сорбозу при производстве витамина С) получают микробиологическим путем. Для синтеза витаминов В1, В2, В6, В12 и аскорбиновой кислоты также используют кефирные грибки, а бифидобактерии – группы В, РР (никотиновая кислота) и Н, однако пока эти микроорганизмы не используются как продуценты витаминов в промышленных масштабах.

Изменяя условия среды, содержание отдельных витаминов можно увеличить. Так, количество рибофлавина зависит от интенсивности аэрации и содержания железа в среде. Количество витаминов в клетках, а также их выделение из последних можно изменить при помощи микроэлементов. Существует производство рибофлавина на основе использования дрожжеподобных грибов Eremothecium ashbyii и Ashbia gossypii. Рибофлавин продуцируется также видами Clostridium и Ascomycetes. Микроводоросль Dunalieiia viridis культивируется с целью получения β-каротина.

Микроорганизмы являются источником получения липидов специального назначения с заранее определенными свойствами. Микробные жиры заменяют растительные (а в ряде случаев и превосходят)и могут использоваться в разных отраслях промышленности, с.-х., медицине.

Получение пищевых ароматизаторов микробиологическим путем может быть более выгодным и продуктивным, чем их химический синтез или другие традиционные способы. Так, в США был разработан экологически безопасный биокаталитический способ синтеза ванилина из глюкозы с

использованием генетически модифицированного штамма E. coli и грибного фермента дегидрогеназы. Аромат ванилина при биотехнологическом его получении оказался в несколько раз интенсивнее обычного.

Весьма перспективно использование грибных культур в качестве продуцентов сырных, грибных, рыбных ароматизаторов. Освоены биотехнологические способы получения веществ, имитирующих ароматы земляники, малины, банана, кокоса, яблока, персика, миндаля.

Микроорганизмы являются важным источником получения полимерных материалов на основе полисахаридов. Ценным микробным полисахаридом является декстран, образуемый бактериями рода Leucomonstoс. Декстран служит основой получения медицинских препаратов (кровезаменителей) и препаратов для биохимических исследований — сефадексов и др. молекулярных сит. Нуклеозиды, нуклеотиды и их производные также можно получать с помощью микроорганизмов.

Большинство пищевых красителей синтезируют химическим путем, но некоторые натуральные пигменты микроорганизмов могут быть с успехом использованы в качестве красителей для пищевых продуктов. Так, из гриба Monascus получен натуральный красный пищевой краситель. Из бактерий с Канарских островов получен розовый краситель для мороженого, крема, мыла. Такие красители безвредны и придают стойкий цвет продуктам, что позволяет предположить, что в будущем микробиологическому производству красителей будет уделяться больше внимания, чем в настоящее время.

Источник

Микроорганизмы используются для производства витаминов

Микроорганизмы используют в промышленном производстве

3) минеральных солей

5) лекарственных препаратов

В генной инженерии широко используют бактерии в производстве витаминов, интерферона, инсулина.

Хочу отметить, что то, с помощью чего получают кефир, называется «грибком», это не просто какая-то разновидность грибов, а сложное образование, куда прежде всего входят молочнокислые бактерии, являющиеся микроорганизмами.

Кефирный грибок представляет собой сложный симбиоз (совместное существование) нескольких видов микроорганизмов, образовавшихся в процессе длительного развития и сосуществования. Микроорганизмы ведут себя как целостный организм: они вместе растут, размножаются и передают свою структуру и свойства последующим поколениям грибков.

Основную микрофлору кефирных грибков составляют три вида микроорганизмов: молочно-кислые палочки, стрептококки и дрожжи. Однако кроме названных бактерий в состав кефирных грибков входят также уксусно-кислые бактерии и ароматобразующие микроорганизмы. Именно эти микроорганизмы определяют специфический вкус и аромат кефира и его питательные качества.

Читайте также:  Реклама с томом хиддлстоном витамины

Так как это симбиоз, отдельно как бактериальный процесс рассматривать нельзя.

4 дистрактор лучше сменить, поскольку он является частично верным. Кефирную закваску составляют микроорганизмы, пусть и живущие в симбиозе как лишайники. В ответах ЕГЭ могут присутствовать только верные и неверные ответы. В данном виде задание существовать не может, поскольку не соответствует ЕГЭ

Заменили кефир на молоко.

Но учтите, что данный вопрос встречался в реальных тестах ЕГЭ, надеемся, что составители его тоже «исправили»

Источник

X Международная студенческая научная конференция Студенческий научный форум — 2018

ПОЛУЧЕНИЕ ВИТАМИННЫХ ПРЕПАРАТОВ

До 30-х годов прошлого столетия рибофлавин (витамин В2) выделяли из природного сырья. В наибольшей концентрации он присутствует в моркови и печени трески. Из 1 т моркови можно изолировать лишь 1 г рибофлавина, а из 1 т печени — 6 г. В 1935 г. обнаружен активный продуцент рибофлавина — гриб эремотециум эшби, способный при выращивании на 1 т питательной смеси синтезировать 25 кг витамина В2. Сверхсинтеза рибофлавина добиваются действием на дикие штаммы мутагенов, нарушающих механизм ретроингибирования синтеза витамина В2, флавиновыми нуклеотидами, а также изменением состава культуральной среды. Отбор мутантов ведут по устойчивости к аналогу витамина В2 — розеофлавину. [1]

Витамин В12 открыт в 1948 г. одновременно в США и Англии. В 1972 г. в Гарвардском университете был осуществлен химический синтез корриноидного предшественника витамина В12. Химический синтез корнестерона — структурного элемента корринового кольца витамина, включающий 37 стадий, в крупных масштабах не воспроизведен из-за сложности процесса.

Первоначально витамин В12 получали исключительно из природного сырья, но из 1 т печени можно было выделить всего лишь 15 мг витамина. Единственный способ его получения в настоящее время — микробиологический синтез. Продуцентами витамина В12 при его промышленном получении служат актиномицеты, метанообразующие и фотосинтезирующие бактерии, одноклеточные водоросли. Для получения высокоочищенных препаратов витамина В12 пропионовокислые бактерии культивируют периодическим способом на средах, содержащих глюкозу, казеиновый гидролизат, витамины, неорганические соли, хлорид кобальта. [4]

Из культуральной жидкости витамин В12 выделяют экстракцией органическими растворителями, ионообменной хроматографией с последующим осаждением из фракций в виде труднорастворимых соединений. В процессе получения витамина В12 с помощью пропионовокислых бактерий применяют дорогостоящую антикоррозийную аппаратуру, сложные и дорогие питательные среды. В последние годы исследуется возможность получения витамина с использованием иммобилизованных клеток пропионовокислых бактерий.[4]

Важное место в обмене веществ у животных занимает р-каротин, который в печени превращается в витамин А (ретинол). В организме человека и животных каротины не образуются. Основные источники р-каротина для животных — растительные корма; человек получает р-каротин также из продуктов животного происхождения. Р-Каротин можно выделить из ряда растительных объектов — моркови, тыквы, облепихи, люцерны. Установлено, что многие микроорганизмы — фототрофные бактерии, актиномицеты, плесневые грибы, дрожжи — синтезируют каротин. [6]

Микробиологическим способом получают и витамин D2 (эрго-кальциферол), при производстве которого освоено дешевое сырье (углеводороды) и установлен стимулирующий эффект ультрафиолетовых лучей на синтез эргостерина культурой дрожжей.

В основном в условиях промышленного производства пантотеновую кислоту получают методом химического синтеза. Наиболее важной коферментной формой витамина В5 является кофермент ацетилирования (КоА). Способностью продуцировать в значительных количествах КоА обладают многие микроорганизмы, в частности актиномицеты. Активно внедряются в промышленное производство способы получения пантотеновой кислоты и ее структурных компонентов из р-аланина и пантотеата калия с помощью иммобилизованных клеток бактерий, а также достигнуты существенные успехи при получении КоА с использованием мутантных штаммов Brevibacterium ammoniagenes, которые позволяют получать КоА в количестве до 3 г на литр. [8]

Одним из наиболее распространенных биотехнологических способов получения коферментной формы никотиновой кислоты — никотинамидадениндинуклеотида (НАД) является выделение (экстракция) его из микроорганизмов, как правило, из пекарских дрожжей. Для повышения содержания НАД в дрожжевых клетках культивирование проводят на средах с предшественниками синтеза никотиновой кислоты. Так, при добавлении в среды культивирования аденина или самой никотиновой кислоты получают до 12 мг НАД на 1 г клеток (по сухой массе).

Аскорбиновая кислота в мировом промышленном производстве витаминной продукции в целом занимает наибольшую долю — около 40 тыс. т в год. Ее синтез был разработан швейцарскими учеными А. Грюсснером и С. Рейхштейном в 1934 г. и используется до настоящего времени. Синтез аскорбиновой кислоты является многостадийным химическим процессом, в котором только одна стадия представлена биотрансформацией. Эта стадия трансформации d-сорбита в L-сорбозу при участии ацетатных бактерий. Для получения сорбозы используют глубинную ферментацию, когда культуру продуцента Gluconobacter oxydans выращивают в ферментерах периодического режима с мешалкой и барботером для усиления аэрации и массообмена в течение 20 — 40 ч с результатом по выходу сорбозы до 98% исходного количества сорбита в среде. Обычно для достижения такого высокого выхода целевого продукта в питательную среду вносят кукурузный или дрожжевой экстракт в количестве около 20%. По окончании ферментации сорбозу выделяют из культуральной жидкости. Помимо оптимизации среды можно совершенствовать и технологическую аппаратуру. Например, переход от периодического культивирования продуцента Gluconobacter oxydans к непрерывному, в аппарате колоночного типа увеличивает скорость образования сорбозы в 1,7 раз. [3]

Читайте также:  Детские витамины успокаивающие нервную систему

Впервые кальциферол был выделен из рыбьего жира в 1936 г. А. Виндаусом и применен при лечении рахита. Он получил название витамина D3, так как ранее из растительных масел был выделен эргостерин под названием витамин D, при облучении которого получили витамин D2 — эргокальциферол (кальциферол — в переводе «несущий кальций»).

В настоящее время кальциферол производят из эргостерина с применением УФ-облучения биотехнологическим методом. В процессе преобразования эргостерина в эргокальциферол принимают участие микроорганизмы. Особенно богаты эргостерином клетки дрожжей всех видов и плесневые грибы. В сухой биомассе дрожжей содержится 5—10% эргостерина.

При дальнейшем УФ-облучении эргостерина получают витамин D2, который либо используется как пищевая добавка, либо подвергается дальнейшей обработке с целью получения кристаллического витамина D2. [5]

Витамин А — циклический, непредельный одноатомный спирт, образуемый в слизистой кишечника и печени из провитаминов под воздействием фермента каротиноксидазы. Каротиноиды — широко распространенная группа природных пигментов, образуемых высшими растениями, водорослями и некоторыми микроорганизмами. У животных эти пигменты не образуются, а поступают с продуктами питания и служат источником витамина А. [10]

Убихиноны в последнее время вызывают интерес как перспективные лечебные препараты. С одной стороны, они синтезируются в организме животных и человека, делая необязательным их поступление с пищевыми продуктами, что отличает их от группы витаминов.

В производстве убихинонов применяются биотехнологические методы, в основе которых лежит экстракция из биологического материала. В промышленном производстве убихинонов, в качестве субстрата используются как растительные ткани, так и микроорганизмы с высоким содержанием убихинонов, например дрожжи и грибы.

В настоящее время используется биотехнология получения уби-хинона-9 и эргостерина из микробных липидов, являющихся побочным продуктом крупного производства белково-витаминного концентрата при выращивании грибов Candida maltosa. [11]

Витамины необходимы для образования иммунных клеток и антител. Суточная потребность в витаминах может быть небольшой, но именно от обеспеченности витаминами зависит нормальная работа иммунной системы и энергетический обмен. Вот почему витаминный дефицит ускоряет старение организма и увеличивает частоту возникновения инфекционных заболеваний и злокачественных опухолей, что значительно сокращает продолжительность и качество жизни.

Специалисты рекомендуют принимать препараты, которые содержат в своем составе весь спектр жизненно важных витаминов, причем, что не менее важно, комплекс должен быть качественным и хорошо сбалансирован по дозировкам. Это будет гарантией эффективности и безопасности препарата. Высокое качество и оптимальные дозировки витаминов позволяют значительно снизить риск аллергических реакций, которые, к сожалению, нередко встречаются в последнее время.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Карелин А.О. , Ерунова Н.В. «Витамины». — М.: серия советы доктора, 2002. — 160 с.2. Вент Ф. «В мире растений», -М.,1993 г. — 232 с3. Блинкин С.А. « Имунитет и здоровье», -М.: Знание. 1977г. — 316 с4. Вершигора А.Е. «Витамины круглый год»,-М 2007 г. — 159 с

6. Яннус А. Э. и Коллас С. Ю. Микробиология, эпидемиология и иммунобиология, 2010 г. — 426 с

7. Фердман Д. Л. В кн.: Витамины. Изд. АН УССР. Киев, 1986 г. — 285 с

8. Смирнова Л. А. Витаминные ресурсы. Витамин В12, его биосинтез, функции и применение. Изд. АН СССР. 1961 г. — 150 с

9. Минкина А. И. Биохимия, 2003 г. — 215 с

10. Игнатова Л. Н. Клиническая медицина, 2006 г. — 652 с

11. Березовский В. М. Химия витаминов. М., 1999 г. — 326 с

Источник

Adblock
detector