КОФЕРМЕНТНАЯ ФУНКЦИЯ ВИТАМИНОВ
Витамины играют важную роль в обмене веществ. В настоящее время известны не только те реакции, для нормального течения которых необходим тот или иной витамин, но и ферменты, в состав коферментов которых входят витамины (табл. 14). Описано более 100 таких ферментов.
Недостаточное поступление витаминов с пищей, нарушение их всасывания и усвоения, повышенная потребность организма в них могут приводить к специфическим для каждого витамина нарушениям обмена веществ и физиологических функций, снижению работоспособности. Длительный дефицит поступления витаминов вызывает специфические заболевания (гиповитаминозы и авитаминозы).
Таблица Важнейшие коферменты, в состав которых входят витамины
Реакции, катализируемые ферментами
РР (никотиновая кислота)
Перенос атомов водорода в процессе тканевого дыхания и биосинтеза с одного субстрата на другой
Перенос атомов водорода с субстрата на кислород
Перенос ацетильных или ацильных радикалов (остаток уксусной и жирных кислот)
Перенос одноуглеродистых соединений в процессе биосинтеза (нуклеиновых кислот и др.)
Окислительное декарбоксилирование кетокислот (пировиноградной, α-кетоглютаровой). Окисление глюкозы в пентозном цикле.
Переаминирование и декарбоксилирование аминокислот и ряд других реакций белкового и аминокислотного обмена
Коэнэим В12 (кобамидный
Перенос и образование лабильных метильных групп и другие реакции биосинтеза
ПРИЧИНЫ ВОЗНИКНОВЕНИЯ ДЕФИЦИТА ВИТАМИНОВ В ОРГАНИЗМЕ
Витамины — незаменимые факторы питания. Их запасы в организме крайне невелики (за исключением ретинола), поэтому они в необходимых количествах должны поступать с пищей. От содержания витаминов в рационе зависит общая направленность обмена веществ и состояние здоровья (табл. 3).
Одной из часто встречающихся причин повышения потребности организма в витаминах является изменение нормального соотношения в пищевом рационе основных усвояемых веществ. Увеличение доли углеводов повышает потребность в витамине В1, белка — в витамине В6, растительных масел — в витамине Е и липотропных факторах. Снижение потребления белка (ниже установленных физиологических норм) увеличивает потребность в большинстве витаминов, так как затрудняется их утилизация, построение ферментов, в которые они входят.
Усиленные физическая и нервная нагрузки приводят к значительным изменениям обменных процессов, что сопряжено с повышенным расходом витаминов.Потребность в витаминах возрастает во время пребывания в высокогорье, при воздействии на организм пониженной и повышенной температур воздуха в крайних климатических зонах. Особенно это относится к людям, не акклиматизировавшимся к данному климату.
Витамины поступают в организм с различными продуктами питания; для предупреждения дефицита витаминов и специфических нарушений обмена они должны поступать систематически и в определенных количествах (табл.3).
Потребность организма взрослого человека в витаминах и их основные источники в питании
Основные источники витаминов в питании
0,6мг на 4000 кДж
Зерновые продукты, не освобожденные от периферических частей и оболочек. Другие растительные и животные продукты
0,7 мг на 1000 кДж
Молоко, молочные продукты, яица, мясо, овощи
Никотиновая кислота (РР)
6,6 мг на 1000 кДж
Печень, яйца, хлеб ржаной, говядина, сыр, молоко, картофель
Мясо, рыба, картофель, капуста, крупы, хлеб пшеничный
фолиевая кислота (Вс)
Печень, зелень (петрушка, шпинат, салат, лук зеленый), говядина, яйца
Мясные и рыбные продукты, яйца, творог
Аскорбиновая кислота (С)
Картофель, капуста, другие овощи, фрукты, ягоды
1 мг ретиноловых
Печень, молоко, рыба, сливочное масло, яйца, сыр
Витамин D (кальцифе- ролы)
Рыба, рыбные продукты, молоко, масло сливочное
Витамин Е токоферолы
Растительные масла, маргарин, крупы, яйца, печень
В настоящее время количественно определена потребность в 10 витаминах, которая зависит от многих причин. Наиболее существенной причиной считают физическую напряженность труда. Потребность в витаминах К, Р, липоевой и пантотеновой кислотах, биотине, а также в витаминоподобных веществах (оротовой кислоте, витамине В15, холине, парааминобензойной кислоте, инозите и карнитине) определена ориентировочно. Более точно разработаны рекомендации по их использованию с целью направленного воздействия на обмен веществ, что отражено в специальных инструкциях, регламентирующих сроки и дозы применения, в том числе и в спортивной практике.
4. Витаминоподобные вещества
В эту группу входят различные химические соединения, которые частично синтезируются в организме и обладают витаминным действием. Однако некоторые из них могут выполнять и специфические функции или самостоятельно или входя в состав других веществ.
Витамин В4 (холин)- Его недостаток вызывает специфичные расстройства липидного обмена. Содержится в значительных количествах в мясе, различных злаках. Поступая через биологические мембраны в клетки, он принимает участие в биосинтезе ацетилхолина и фосфотидов и поставляет подвижные метильные группы -СН3 при различных реакциях трансаминирования.
Витамин В8 (инозит) — Недостаток вызывает задержку роста у молодняка, облысение и специфические расстройства нервной системы. У человека, заболевания связанные с витамином В8 не установлены.
Оротовая кислота — витамин В13. К витаминам эта кислота относится условно, так как авитаминоз описан только у грызунов и кур. Она является предшественником урацила и цитозина, т. е. может использоваться при биосинтезе пиримидиновых нуклеотидов. С целью стимулирования биосинтеза нуклеиновых кислот и как лечебное средство при нарушениях белкового обмена оротовая кислота применяется в лечебной практике.
Пангамовая кислота — витамин В15. Эта кислота относится к витаминам также условно (неизвестна потребность в ней организма человека и животных). Однако она обнаружена в продуктах питания и обладает рядом ценных свойств, благодаря чему препарат витамина В15 применяются в медицине и спортивной практике. Витамин представляет собой эфир глюконовой кислоты и димецилглицина. Благодаря наличию метильных групп, соединенных с азотом («лабильных» метильных групп), он оказывает положительное влияние на липидный обмен. Витамин В15 стимулирует тканевое дыхание, повышает эффективность использование кислорода тканями, особенно при его недостатке различного происхождения, стимулирует продукцию стероидных гормонов коры надпочечников. Как лечебное средство используется при угрозе жирового перерождения печени, атеросклерозе, состояниях, сопровождающихся кислородным голоданием.
Витамин N (липоевая кислота) – содержится в растительных и животных тканях. Выполняет роль кофермента окислительного декарбоксилирования ПВК и альфа-кетоглутаровой кислоты, как сильный восстановитель снижает потребность в витаминах Е и С, предотвращая их быстрое окисление.
Витамин U (метилметионинсульфоний, противоязвенный фактор) – содержится в овощах, особенно много в капусте, разрушается при варке. Является донором метильных групп, вследствие чего выполняет роль липотропного фактора, используемого при лечении и профилактике жирового перерождения печени. Обладает антигистаминными свойствами, противоязвенной активностью. Применяется при лечении язвенной болезни желудка и 12-перстной кишки, гастритов.
Источник
2.5. Коферменты и витамины
Ферменты могут быть как простыми, так и сложными белками. Сложные ферменты состоят из белковой части – апофермента и небелковой – кофермента. Апофермент определяет специфичность фермента. Кофермент стабилизирует апофермент, участвует в катализе, входит в состав активного центра ферментов.
Коферменты представлены веществами органической природы – нуклеотидами, витаминами.
Классификация коферментов основана на принадлежности их к определенному классу ферментов. Только класс гидролаз не имеет коферментов.
Коферменты оксидоредуктаз: НАД, НАДФ, ФАД, ГЕМ, кофактор-витамин С.
НАД – никотинамидадениндинуклеотид. Этот кофермент включает два нуклеотида, которые соеденены фосфодиэфирной связью. Первый представлен адениловой кислотой (АМФ), второй содержит амид никотиновой кислоты + рибоза + остаток фосфорной кислоты.
аденин – рибоза – фосфат
никотинамид – рибоза — фосфат
Активная часть НАД – амид никотиновой кислоты (витамин РР). Дегидрогеназы содержащие НАД, отщепляют от субстрата водород, при этом субстрат окисляется, а НАД восстанавливается. Например:
НОН МАЛАТ ДГ С = О
С Н2 СН2
Соон надн2 соон
ФАД включает два нуклеотида: АМФ и ФМН (флавинмононуклеотид)
аденин – рибоза – фосфат
изоаллоксазин – рибитол – фосфат
Биологическая роль: ФАД-кофермент флавиновых ферментов, катализирующих окислительно-восстановительные реакции (тканевое дыхание, дезаминирование аминокислот, распад жирных кислот, пуриновых и пиримидиновых оснований и.т.д.)
ФМН и ФАД содержат витамин В2 (рибофлавин).
Коферменты трансфераз: HS КоА, ПФ, АТФ.
ПФ – пиридоксальфосфат. ПФ образуется путем фосфорилирования перидоксаля при участии АТФ.
Биологическая роль ПФ:
Участвует в реакциях трансаминирования аминокислот, катализируемых трансаминазами (трансферазы). Трансаминирование осуществляется путём обмена кетогруппы в — кетокислотах на аминогруппу в аминокислотах, в результате чего образуется новая кетокислота и новая аминокислота.
По химической природе представляет сложное органическое соединение, в состав которого входит пантотеновая кислота (витамин В3).
HS КоА переносит ацильные и ацетильные остатки:
RCOOH + HSKoA RC
Аденин – рибоза – р – о
АТФ – это высокоэргическое соединение, энергия макроэргических связей (
) которых может использоваться при различных синтезах, сокращении мышц, активном транспорте, нервном возбуждении и.т.д.
Как коферемент, АТФ участвует во многих реакциях:
глюкоза + АТФ глюкозо-6-фосфат + АДФ
тиамин + АТФ тиаминпирофосфат + АМФ
Перенос аденилата (при активации аминокислот в биосинтезе белка)
А МК + АТФ амилоациладенилат
Коферменты лиаз: ТДФ, ПФ.
ТДФ – тиаминдифосфат, является производным витамина В1 (тиамин).
Участвует в декарбоксилировании кетокислот (ПВК, -кетоглутаровая кислота).
Участвует в неокислительной ветви пентозного цикла в составе транскетолаз.
Является коферментом декарбоксилаз аминокислот. Эти ферменты осуществляют отщепление СО2 от карбоксильной группы аминокислот, при этом образуются высокоактивные биогенные амины (-аминомаслянная кислота, дофамин, серотонин).
Источник
Жирорастворимые витамины (A, D, E, K)
Жирорастворимые витамины – витамины A, D, E, K, которые являются жизненно важными микронутриентами, необходимыми для нормальной функции клеток, метаболизма белков, жиров, углеводов и электролитов, работы различных ферментных систем организма, окислительно-восстановительных процессов, свертываемости крови, роста и развития. Дефицит витаминов оказывает серьезное отрицательное влияние на здоровье человека и функции многих органов, а переизбыток некоторых витаминов – токсическое действие.
Жирорастворимые витамины (ретинол, кальциферол, токоферол, 2-метил-1,4-нафтохинон)
Синонимы английские
Fat soluble vitamins
Высокоэффективная жидкостная хроматография-масс-спектрометрия (ВЭЖХ-МС)
Мкг/мл (микрограмм на миллилитр), нг/мл (нанограмм на миллилитр)
Какой биоматериал можно использовать для исследования?
Как правильно подготовиться к исследованию?
- Не принимать пищу в течение 8 часов до исследования, можно пить чистую негазированную воду.
- Не курить в течение 30 минут до исследования.
Общая информация об исследовании
Витамины – эссенциальные органические вещества, необходимые организму в небольших количествах. Они входят в состав коферментов, участвующих в окислительно-восстановительных реакциях, тканевом дыхании, синтезе белков, жиров и углеводов, образовании гормонов, росте, созревании и делении клеток, формировании тканей, защите от инфекций. По биохимическим свойствам витамины разделяются на водорастворимые (витамины группы В, витамин С) и жирорастворимые (витамины А, D, Е, К).
Организм человека не способен самостоятельно синтезировать витамины, однако некоторые могут накапливаться в печени (витамины А, D, Е). Для их абсорбции из пищевого тракта необходимо присутствие жиров. Витамины содержатся в продуктах растительного и животного происхождения. При термической обработке, воздействии света содержание витаминов в продуктах уменьшается. Также они разрушаются под влиянием алкоголя, никотина, кофеина. Жирорастворимые витамины способны накапливаться в организме и оказывать токсическое воздействие в высоких дозах.
Дефицит витаминов возникает при несбалансированном и нерациональном питании, заболеваниях желудочно-кишечного тракта, которые сопровождаются нарушением всасывания питательных веществ, выделения желчи (для жирорастворимых витаминов), или при повышенном потреблении витаминов в метаболизме (например, при беременности, лактации).
Витамин А необходим для нормального зрения, роста и дифференциации эпителиальной ткани, роста костей, развития плода, функционирования иммунной и репродуктивной систем. В организме ретинол синтезируется из жирорастворимого провитамина – бета-каротина. Источниками бета-каротина являются тыква, морковь, батат, зелёный лук, щавель, шпинат, латук, салат, салат, капуста кейл, помидоры, красный перец, брокколи, грейпфруты, сливы, персики, дыни, абрикосы, хурма, крыжовник, черника, чёрная смородина, ретинола – рыбий жир, печень, сливочное масло, желток, молоко. Суточная потребность в ретиноле для детей в зависимости от возраста – 400-900 мкг, для взрослых – 900 мкг. Усваиваемость витамина А из кишечника уменьшается при недостаточном количестве витамина Е и цинка. Признаками гиповитаминоза А являются нарушения развития костей костей и зубов, ощущение сухости и раздражения глаз, потеря волос, снижение аппетита, кожные высыпания, рецидивирующие инфекции и нарушения ночного зрения («куриная слепота»). В отличие от витамина А бета-каротин в повышенных дозах не обладает токсическими свойствами и не вызывает гипервитаминоза. Чрезмерное употребление витамина А может привести к головокружению, повышению внутричерепного давления, хейлиту, алопеции, фиброзу печени. В высоких дозах ретинол оказывает тератогенное действие.
Витамин D (кальцитриол) является предшественником гормона, ответственного за кальциевый обмен и регуляцию формирования костной ткани. Основными источниками предшественников витамина Dявляются жирные сорта рыбы, рыбий жир, сливочное масло, сыр и другие молочные продукты, желток. Под действием ультрафиолета в коже они превращаются в активные формы гормона, препятствующие развитию рахита у детей и остеопороза и остеомаляции у взрослых. Дефицит витамина D ассоциирован с сердечно-сосудистыми, онкологическими и аутоиммунными заболеваниями. Учитывая возможность передозировки холекальциферола, при профилактическом приеме доза препарата не должна превышать 10-15 мкг/сут. Длительный избыток витамина D может стать причиной кальцификации тканей и повреждения почек. При употреблении холекальциферола в высоких дозах может возникнуть головная боль, желудочно-кишечные расстройства.
Витамин Е является важным антиоксидантом, антигипоксантом, иммуномодулятором и коферментом в процессах формирования коллагена, принимает участие в регуляции липидного баланса, экспрессии генов, неврологических функций. При сбалансированном питании в организм из растительных масел, орехов, зеленых листовых овощей, злаков, желтка, печени, молока поступает достаточное количество витамина. На фоне дефицита витамина Е возникает периферическая нейропатия, миопатия, бесплодие. Глубокий авитаминоз проявляется гемолитической анемией. Повышенное содержание витамина Е в организме уменьшает агрегацию тромбоцитов и формирование кровяного сгустка.
Витамин К необходим для синтеза факторов свертывания крови. В небольшом количестве витамин К синтезируется микробиотой толстой кишки. Пищевыми источниками являются зеленые листовые овощи, различные виды капусты, злаковые, отруби, мясо, молочные продукты, яйца, фрукты, оливковое масло. Рекомендованная дневная норма витамина К – 120 мкг/сут. При его дефиците возникают кровотечения, а при переизбытке – гемолитическая анемия и гипербилирубинемия у детей.
По ряду различных причин может развиться дефицит отдельных витаминов (например, цинга, арибофлавиноз, пеллагра, бери-бери, рахит), но поливитаминная недостаточность наблюдается чаще. Нарушения пищеварения, патологии поджелудочной железы, печени и тонкого кишечника приводят к снижению абсорбции витаминов и провитаминов из пищи. Исследование уровня жирорастворимых витаминов в крови позволяет оценить обеспеченность организма данными эссенциальными веществами, дифференцировать различные варианты гипо- и гипервитаминозов, обосновать мероприятия по коррекции витаминной недостаточности и подобрать адекватную диету и лечебную терапию.
Для чего используется исследование?
- Диагностика недостаточности жирорастворимых витаминов;
- дифференциальная диагностика гипо- и гипервитаминозов и клинически схожих состояний;
- оценка сбалансированности питания;
- диагностика гипервитаминозов.
Когда назначается исследование?
- При синдроме мальабсорбции на фоне заболеваний желудочно-кишечного тракта (целиакия, муковисцидоз, воспалительные заболевания кишечника, патология поджелудочной железы, состояния после резекции желудка и/или тонкой кишки, обструкция желчевыводящих путей);
- при клинических признаках недостаточности жирорастворимых витаминов (дерматиты, сухость слизистых, длительная диарея, неврологические нарушения, анемии, нарушения репродуктивной функцией);
- при обследовании пациентов с гипотрофией, алкоголизмом или находящихся на парентеральном питании;
- при стеаторее (повышенном содержании жиров в стуле в связи с их недостаточной абсорбцией в кишечнике).
Источник