Синтез витамина D в коже
Синтез витамина D в коже
По международным данным, эффективное излучение для синтеза витамина D охватывает спектральный диапазон (255–330 нм) с максимумом около 295 нм (UVB). Воздействие УФ-излучения, индуцирующего покраснение кожи в минимальной эритемной дозе в течение 15–20 минут, способно индуцировать выработку до 250 мкг витамина D (10 000 МЕ).
Кожа человека представляет собой место синтеза витамина D, а также орган-мишень для биологически активной формы этого витамина. Витамин D влияет на многие функции кожи, начиная от пролиферации, дифференцировки и апоптоза кератиноцитов до поддержания барьера и иммунорегуляторных процессов. Кроме того, витамин D рассматривается в качестве терапевтического варианта при многих патологиях кожи.
Кожа выступает в качестве первой линии защиты от различных инфекций. Как известно, она состоит из трех структур: эпидермиса, дермы и гиподермы.
Кератиноциты составляют 95 % всех эпидермальных клеток. Существует несколько эпидермальных слоев, каждый из которых состоит из кератиноцитов на разных стадиях дифференцировки:
базальный слой: состоит из столбчатых пролиферирующих кератиноцитов с обширной сетью кератинов K5 и K14;
слой шиповидных клеток: в этом слое кератиноциты инициируют дифференцировку посредством синтеза кератинов K1 и K10, инволюкрина и фермента трансглутаминазы;
зернистый слой: характеризуется кератиноцитами, богатыми электронно-плотными гранулами белка кератогиалина, содержащего маркеры поздней дифференциации, такие как профилаггрин (предшественник филаггрина) и лорикрин; он также состоит из заполненных липидами пластинчатых тел, которые освобождают свое содержимое в межклеточные пространства между зернистым и роговым слоем;
роговой слой: самый верхний слой, состоит из окончательно дифференцированных ороговевших клеток, известных как корнеоциты. Плазматическая мембрана корнеоцитов заменяется нерастворимым белковым слоем, называемым «ороговевшей оболочкой», состоящим из структурных белков, таких как инволюкрин, лорикрин, филаггрин и небольшой пролин-богатый белок, сшитый трансглутаминазой.
Филаггрин является особенно важной молекулой – он способствует агрегации кератиновых нитей цитоскелета в пучки, что приводит к соединению корнеоцитов в уплощенные диски. Также он способствует гидратации путем протеолиза в пирролидинкарбоновую и трансурокановую кислоту в условиях низкого содержания воды. Постоянная толщина эпидермиса поддерживается тонким балансом между пролиферацией базальных клеток и десквамацией корнеоцитов. Процесс десквамации начинается с деградации корнеодесмосом (модифицированных десмосом) и контролируется рядом протеаз и их ингибиторов. Пептидазы, связанные с калликреином человека (KLK), включая KLK5, KLK7 и KLK14, являются известными протеазами, участвующими в десквамации.
Витамин D: синтез и функции
Витамин D является жирорастворимым витамином, который встречается в двух основных формах:
эргокальциферол (витамин D2), вырабатываемый растениями,
холекальциферол (витамин D3), полученный из продуктов животного происхождения.
Основным источником витамина D у людей является синтез в коже в присутствии солнечного света. Воздействие 7-дегидрохолестерина (7-DHC) ультрафиолетовым излучением B (UVB) с длиной волны 290–315 нм приводит к образованию превитамина D в коже, который термически изомеризуется в более стабильный витамин D (холекальциферол). Витамин D, синтезируемый в коже или получаемый из рациона, подвергается двум реакциям гидроксилирования: сначала в печени фермент витамин D 25-гидроксилаза (CYP2R1) образует 25-гидроксивитамин D, 25 (OH) D, также известный как кальцидиол, и затем в почках 1α-гидроксилазой (CYP27B1) с образованием активного метаболита 1,25-дигидроксивитамина D, 1,25 (OH) 2D, также известного как кальцитриол.
И 25 (OH) D, и 1,25 (OH) 2D могут метаболически инактивироваться путем гидроксилирования 24-гидроксилазой (CYP24A1). Уровни витамина D в сыворотке строго регулируются механизмом обратной связи кальция, фосфора, паратиреоидного гормона, фактора роста фибробластов и самого витамина D. Состояние витамина D оценивается путем измерения уровня 25 (OH) D в сыворотке, который является его основной циркулирующей формой. В соответствии с рекомендациями Американского эндокринного общества дефицит витамина D определяется как уровень 25 (OH) D в сыворотке ниже 20 нг / мл (50 нмоль / л), а недостаточность витамина D – как уровень 25 (OH) D в сыворотке от 21 до 29 нг / мл (52,5–72,5 нмоль / л).
Долгое время считалось, что функция витамина D заключается в поддержании нормальной структуры опорно-двигательного аппарата за счет гомеостаза кальция и фосфора, но в последние несколько десятилетий возросло его влияние на регуляцию клеток, их пролиферацию, дифференцировку, апоптоз и иммунную модуляцию. Эти функции витамина D опосредованы рецептором витамина D (VDR), который после активации взаимодействует с рецептором ретиноида X (RXR) с образованием гетеродимерного комплекса.
Рецептор витамина D (VDR) выполняет в коже и некоторые другие функции, не связанные с 1,25-дигидроксивитамином-D3. Например, VDR играет важную роль в регулировании роста зрелых волосяных фолликулов. При некоторых мутациях VDR нарушается регуляция активности соответствующего гена, что приводит к таким аномалиям развития волосяного фолликула, как очаговая или полная алопеция (выпадение волос). VDR также является опухолевым супрессором. Рецептор VDR принадлежит к тем немногим факторам, которые выполняют эти функции. Кроме того, 1,25-дигидроксивитамин-D3 является мощным иммуномодулятором кожи.
Витамин D играет жизненно важную роль в коже: кератиноциты являются не только источником витамина D, но и ответчиком на его активную форму. Они являются единственными клетками в организме, которые могут синтезировать витамин D из его предшественника 7-DHC и оснащены всем ферментативным механизмом (CYP27A1 и CYP27B1), необходимым для метаболизма витамина D в его активный метаболит 1,25 (OH) 2D. Витамин D3 синтезируется в коже из его предшественника 7-DHC под воздействием UVB и метаболизируется до его активной формы 1,25 (OH) 2D3 через две последующие реакции гидроксилирования ферментами CYP27A1 и CYP27B1. Он становится неактивным через катаболический фермент CYP24A1.
Доказано, что витамин D влияет на пролиферацию и дифференцировку клеток кожи либо напрямую, либо через его взаимодействие с кальцием. Многие исследования in vitro показали дозозависимое влияние витамина D на пролиферацию и дифференцировку кератиноцитов. Было обнаружено, что при низкой концентрации ( 10−8) ингибирует пролиферацию и способствует дифференцировке. 1,25 (OH) 2D способствует дифференцировке кератиноцитов за счет повышенного синтеза структурных компонентов (инволюкрин, трансглутаминаза, лорикрин и филаггрин) ороговевшей оболочки. Влияние витамина D на дифференцировку также частично обусловлено повышением внутриклеточного уровня кальция, вызванным стимуляцией рецептора кальция, повышением экспрессии фосфолипазы C-γ1 и усилением образования церамидов.
Витамин D может также непосредственно регулировать дифференцировку кератиноцитов посредством взаимодействия с VDR. Процесс опосредованной витамином D эпидермальной дифференцировки через VDR является последовательным и требует избирательного связывания VDR с двумя основными коактиваторами: белком, взаимодействующим с рецептором витамина D (DRIP), и соактиватором стероидных рецепторов (SRC). Было отмечено, что DRIP205 преимущественно экспрессируется в пролиферирующих кератиноцитах и, по мере дифференцировки клеток, экспрессия DRIP205 снижается, а экспрессия SRC3 увеличивается. Было продемонстрировано, что кальций также регулирует экспрессию этих 2 коактиваторов и взаимодействует с VDR для дифференцировки кератиноцитов.
Другим аспектом пролиферации и дифференцировки кератиноцитов является поддержание эпидермального барьера. Исследования показали, что местное применение кальцитриола (1,25 [OH] 2D) восстанавливает барьер проницаемости, который был нарушен при применении кортикостероидных препаратов или лаурилсульфата натрия. Витамин D опосредует свое влияние на эпидермальный барьер благодаря усиленному синтезу структурных белков ороговевшей оболочки. Кроме того, 1,25 (OH) 2D регулирует процессинг гликозилкерамидов с длинной цепью, необходимых для образования липидного барьера.
Влияние витамина D на апоптоз кератиноцитов зависит от дозы, как и его влияние на пролиферацию клеток. В физиологических концентрациях витамин D предотвращает апоптоз, а в высоких концентрациях он может вызывать апоптоз в кератиноцитах.
Врожденная иммунная система кожи включает физические барьерные структуры, такие как роговой слой, иммунные клетки (нейтрофилы, моноциты, макрофаги, дендритные клетки, естественные клетки-киллеры [NK] и т. д.) и антимикробные пептиды (AMP). Кожный синтез AMP является основным механизмом защиты кожи от воздействия окружающей среды или микробной инвазии. Многие резидентные клетки кожи (кератиноциты, себоциты, клетки эккринной железы и тучные клетки) и циркулирующие клетки (нейтрофилы и NK-клетки) способствуют синтезу AMP в коже. Известно более 20 белков с антимикробной функцией, которые распознаются в коже; однако β-дефензин и кателицидины являются двумя основными группами AMP кожи. Кателицидин и β-дефензин опосредуют антимикробную активность либо непосредственно, разрушая мембрану бактериальной клетки и оболочку вируса, либо косвенно, воздействуя на различные сигнальные пути в клетках, чтобы инициировать ответ хозяина. Уровень AMP низок в неповрежденной коже и увеличивается после разрушения барьера или инфекции. Одним из возможных путей достижения этой цели является усиление экспрессии CYP27B1 после повреждения кожи, что увеличивает локальный синтез активного витамина D. Кателицидин и β-дефензин являются прямыми мишенями для транскрипции витамина D, причем кателицидин индуцируется связыванием комплекса 1,25 (OH) 2D-VDR с VDRE в области промотора гена; однако, β-дефензин требует ядерного фактора κB вместе с комплексом 1,25 (OH) 2D-VDR для его транскрипции. Также показано, что витамин D регулирует синтез AMP с помощью механизмов, отличных от прямой активации транскрипции. Активность кателицидина и других AMP в коже человека контролируется путем ферментативной обработки сериновыми протеазами KLK5 и KLK7. В одном из исследований показано, что 1,25 (OH) 2D3 может влиять на продукцию AMP в коже, регулируя синтез и протеазную активность KLK5 и KLK7.
Помимо регуляции синтеза AMP в коже, 1,25 (OH) 2D3 и кальципотриол (аналог витамина D) опосредуют иммуносупрессивное действие в коже за счет снижения презентации антигена либо непосредственно, воздействуя на клетки Лангерганса, либо косвенно, модулируя выработку цитокинов кератиноцитами. В последнее время многие исследования показали, что кальципотриол обеспечивает толерантность или иммуносупрессию в коже путем индукции CD4 + CD25 + T-регуляторных (Treg) клеток, что предотвращает последующую антиген-специфическую пролиферацию CD8 + T-клеток и продукцию IFN-γ. Исследования, изучающие влияние витамина D на Т-клетки в коже, противоречивы. В то время как некоторые исследования показали, что 1,25 (OH) 2D3 и его аналоги предотвращают инфильтрацию Т-клеток кожи путем подавления экспрессии, другие исследования показали, что 1,25 (OH) 2D3 индуцирует экспрессию специфического рецептора CCR10 на T -клетки. Было показано, что сезонные колебания уровня витамина D влияют на экспрессию рецепторов кожи (в течение лета этот уровень повышен).
Постоянное длительное пребывание на солнце, как известно, может приводить к повреждению упругой структуры кожи и возрастанию риска развития морщин. Тем не менее, исходя из понимания важности воздействия солнца для образования в коже витамина D3, для синтеза достаточного количества витамина D3 было бы разумным пребывание на солнце с незащищенной кожей в течение ограниченного промежутка времени. При правильном применении солнцезащитных средств (2 мг/см2, т. е. приблизительно 25–30 г на все тело взрослого человека в купальнике), количество витамина D3, образующегося в коже, снижается более чем на 95%. Воздействие солнечного света в течение 5–15 мин. с 1000 до 1500 весной, летом и осенью, как правило, является достаточной экспозицией для людей с II или III типом кожи . При этом доза облучения составляет приблизительно 25 % экспозиции, необходимой для возникновения минимальной эритемной реакции, т. е. небольшого порозовения кожи. После такого воздействия рекомендуется применение солнцезащитного крема с SPF 15 и более для предотвращения вредного влияния хронического длительного воздействия солнечных лучей.
Таким образом, витамин D является важным и необходимым, действующим как индикатор общего состояния здоровья и хорошего самочувствия. Доказано его огромное влияние на ряд кожных заболеваний (псориаз, экзема, акне, атопический дерматит, рак кожи и т.д.). Поэтому необходимо контролировать уровень витамина D и корректировать его дефицит.
Источник
Роспотребнадзор (стенд)
Роспотребнадзор (стенд)
Ультрафиолетовое излучение и его влияние на организм — ЦЕНТР ГИГИЕНЫ И ЭПИДЕМИОЛОГИИ
Ультрафиолетовое излучение и его влияние на организм
Ультрафиолетовое излучение и его влияние на организм
Общая характеристика
Наибольшей биологической активностью обладают ультрафиолетовые лучи. В естественных условиях мощным источником ультрафиолетовых лучей является солнце. Однако лишь длинноволновая его часть достигает земной поверхности. Более коротковолновая радиация поглощается атмосферой уже на высоте 30- 50 км от поверхности земли.
Наибольшая интенсивность потока ультрафиолетовой радиации наблюдается незадолго до полудня с максимумом в весенние месяцы.
Как уже указывалось, ультрафиолетовые лучи обладают значительной фотохимической активностью, что широко используется в практике. Ультрафиолетовое облучение применяется при синтезе ряда веществ, отбеливании тканей, изготовлении лакированной кожи, светокопировании чертежей, получении витамина D и других производственных процессах.
Важным свойством ультрафиолетовых лучей является их способность вызывать люминесценцию.
При некоторых процессах имеет место воздействие на работающих ультрафиолетовых лучей, например электросварка вольтовой дугой, автогенная резка и сварка, производство радиоламп и ртутных выпрямителей, литье и плавка металлов и некоторых минералов, светокопировка, стерилизация воды и т. д. Этому же воздействию подвергаются медицинский и технический персонал, обслуживающий ртутно-кварцевые лампы.
Ультрафиолетовые лучи обладают способностью изменять химическую структуру тканей и клеток.
Длина волны ультрафиолетового излучения
Биологическая активность ультрафиолетовых лучей различной длины волны неодинакова. Ультрафиолетовые лучи с длиной волны от 400 до 315 mμ . оказывают относительно слабое биологическое действие. Лучи с меньшей длиной волны отличаются большей биологической активностью. Ультрафиолетовые лучи длиной 315-280 mμ оказывают сильное кожное и антирахитическое действие. Особенно большой активностью обладает излучение с длиной волн 280-200 mμ . (бактерицидное действие, способность активно воздействовать на тканевые белки и липоиды, а также вызывать гемолиз).
В производственных условиях имеет место воздействие ультрафиолетовых лучей с длиной волны от 36 до 220 mμ ., т. е. обладающих значительной биологической активностью.
В отличие от тепловых лучей, основным свойством которых является развитие гиперемии в участках, подвергшихся облучению, действие на организм ультрафиолетовых лучей представляется значительно более сложным.
Ультрафиолетовые лучи относительно мало проникают через кожу и их биологическое действие связано с развитием многих нейрогуморальных процессов, обусловливающих сложный характер влияния их на организм.
Ультрафиолетовая эритема
В зависимости от интенсивности источника света и содержания в его спектре инфракрасных или ультрафиолетовых лучей изменения со стороны кожи будут неодинаковыми.
Воздействие ультрафиолетовых лучей на кожу вызывает характерную реакцию со стороны сосудов кожи — ультрафиолетовую эритему. Ультрафиолетовая эритема существенно отличается от тепловой эритемы, вызванной инфракрасным облучением.
Обычно при применении инфракрасных лучей выраженных изменений со стороны кожи не наблюдается, так как возникающее чувство жжения и боль препятствуют длительному воздействию этих лучей. Эритема, развивающаяся в результате действия инфракрасных лучей, возникает непосредственно после облучения, является нестойкой, держится недолго (30-60 минут) и носит главным образом гнездный характер. После длительного воздействия инфракрасных лучей появляется бурая пигментация пятнистого вида.
Ультрафиолетовая эритема появляется после облучения вслед за некоторым латентным периодом. Этот период колеблется у разных людей от 2 до 10 часов. Продолжительность латентного периода ультрафиолетовой эритемы находится в известной зависимости от длины волны: эритема от длинноволновых ультрафиолетовых лучей появляется позднее и держится дольше, чем от коротко
Эритема, вызванная ультрафиолетовыми лучами, имеет ярко-красную окраску с резкими границами, точно соответствующими участку облучения. Кожа становится несколько отечной и болезненной. Наибольшего развития эритема достигает через 6-12 часов после появления, держится в течение 3-5 дней и постепенно бледнеет, приобретая коричневый оттенок, причем происходит равномерное и интенсивное потемнение кожи вследствие образования в ней пигмента. В некоторых случаях в период исчезновения эритемы наблюдается небольшое шелушение.
Степень развития эритемы зависит от величины дозы ультрафиолетовых лучей и индивидуальной чувствительности. При прочих равных условиях, чем больше доза ультрафиолетовых лучей, тем интенсивнее воспалительная реакция кожи. Наиболее выраженная эритема вызывается лучами с длинами волн около 290 mμ . При передозировке ультрафиолетового облучения эритема приобретает синюшный оттенок, края эритемы становятся расплывчатыми, облученный участок отечен и болезнен. Интенсивное облучение может вызвать ожог с развитием пузыря.
Чувствительность различных участков кожи к ультрафиолету
Кожные покровы живота, поясницы, боковых поверхностей грудной клетки обладают наибольшей чувствительностью к ультрафиолетовым лучам. Наименее чувствительна кожа кистей рук и лица.
Лица с нежной, слабопигментированной кожей, дети, а также страдающие базедовой болезнью и вегетативной дистонией обладают большей чувствительностью. Повышенная чувствительность кожи к ультрафиолетовым лучам наблюдается весной.
Установлено, что чувствительность кожи к ультрафиолетовым лучам может изменяться в зависимости от физиологического состояния организма. Развитие эритемной реакции зависит в первую очередь от функционального состояния нервной системы.
В ответ на ультрафиолетовое облучение в коже образуется и откладывается пигмент, являющийся продуктом белкового обмена кожи (органическое красящее вещество — меланин).
Длинноволновые ультрафиолетовые лучи вызывают более интенсивный загар, чем коротковолновые. При повторном ультрафиолетовом облучении кожа становится менее восприимчивой к этим лучам. Пигментация кожи развивается нередко и без предварительно видимой эритемы. В пигментированной коже ультрафиолетовые лучи не вызывают фотоэритемы.
Положительное влияние ультрафиолета
Ультрафиолетовые лучи понижают возбудимость чувствительных нервов (болеутоляющее действие) и оказывают также антиспастическое и антирахитическое действие. Под влиянием ультрафиолетовых лучей происходит образование очень важного для фосфорно-кальциевого обмена витамина D (находящийся в коже эргостерин превращается в витамин D). Под воздействием ультрафиолетовых лучей усиливаются окислительные процессы в организме, увеличивается поглощение тканями кислорода и выделение углекислоты, активируются ферменты, улучшается белковый и углеводный обмен. Повышается содержание кальция и фосфатов в крови. Улучшаются кроветворение, регенеративные процессы, кровоснабжение и трофика тканей. Расширяются сосуды кожи, снижается кровяное давление, повышается общий биотонус организма.
Благоприятное действие ультрафиолетовых лучей выражается в изменении иммунобиологической реактивности организма. Облучение стимулирует выработку антител, повышает фагоцитоз, тонизирует ретикулоэндотелиальную систему. Благодаря этому повышается сопротивляемость организма к инфекциям. Важное значение в этом отношении имеет дозировка облучения.
Ряд веществ животного и растительного происхождения (гематопорфирин, хлорофилл и т. д.), некоторые химические препараты (хинин, стрептоцид, сульфидин и т. д.), особенно флуоресцирующие краски (эозин, метиленовая синька и т. д.), обладают свойством повышать чувствительность организма к свету. В промышленности у лиц, работающих с каменноугольной смолой, отмечаются заболевания кожи открытых частей тела (зуд, жжение, краснота), причем эти явления исчезают по ночам. Это связано с фотосенсибилизирующими свойствами содержащегося в каменноугольной смоле акридина. Сенсибилизация имеет место преимущественно в отношении видимых лучей и в меньшей степени в отношении ультрафиолетовых лучей.
Большое практическое значение имеет способность ультрафиолетовых лучей убивать различные бактерии (так называемое бактерицидное действие). Это действие особенно интенсивно выражено у ультрафиолетовых лучей с длинами волн менее (265 — 200 mμ ).
Бактерицидное действие света связано с влиянием на протоплазму бактерий. Доказано, что после ультрафиолетового облучения митогенетическое излучение в клетках и крови повышается.
По современным представлениям, в основе действия света на организм лежит главным образом рефлекторный механизм, хотя большое значение придается и гуморальным факторам. Особенно это относится к действию ультрафиолетовых лучей. Нужно также иметь в виду возможность действия видимых лучей через органы зрения на кору и вегетативные центры.
В развитии эритемы, вызванной светом, существенное значение придается влиянию лучей на рецепторный аппарат кожи. При воздействии ультрафиолетовых лучей в результате распада белков в коже образуются гистамин и гистаминоподобные продукты, которые расширяют кожные сосуды и повышают их проницаемость, что ведет к гиперемии и отечности. Образующиеся в коже при воздействии ультрафиолетовых лучей продукты (гистамин, витамин D и др.) поступают в кровь и вызывают те общие сдвиги в организме, которые имеют место при облучении.
Таким образом, развивающиеся в облученном участке процессы ведут нейрогуморальным путем к развитию общей реакции организма. Эта реакция определяется главным образом состоянием высших регулирующих отделов центральной нервной системы, которое, как известно, может меняться под влиянием различных факторов.
Нельзя говорить о биологическом действие ультрафиолетового облучения вообще, вне зависимости от длины волны. Коротковолновое ультрафиолетовое излучение вызывает денатурацию белковых веществ, длинноволновое — фотолитический распад. Специфическое действие разных участков спектра ультрафиолетового излучения выявляется главным образом в начальной стадии.
Применение ультрафиолетового излучения
Широкое биологическое действие ультрафиолетовых лучей дает возможность в определенных дозах использовать их для профилактических и лечебных целей.
Для ультрафиолетового облучения пользуются солнечным светом, а также искусственными источниками облучения: ртутно-кварцевыми и аргонортутно-кварцевыми лампами. Спектр излучения ртутно-кварцевых ламп характеризуется наличием более коротких ультрафиолетовых лучей, чем в солнечном спектре.
Ультрафиолетовое облучение может быть общим или местным. Дозировка процедур производится по принципу биодоз.
В настоящее время ультрафиолетовое облучение широко используют, прежде всего, для профилактики различных заболеваний. С этой целью ультрафиолетовое облучение применяют для оздоровления окружающей человека внешней среды и изменения его реактивности (в первую очередь — повышения его иммунобиологических свойств).
С помощью специальных бактерицидных ламп может производиться стерилизация воздуха в лечебных учреждениях и жилых помещениях, стерилизация молока, воды и т. д. широко используется ультрафиолетовое облучение для предупреждения рахита, гриппа, в целях общего укрепления организма в лечебных и детских учреждениях, школах, физкультурных залах, фотариях при угольных шахтах, при тренировке спортсменов, для акклиматизации к условиям севера, при работах в горячих цехах (ультрафиолетовое облучение дает больший эффект в сочетании с воздействием инфракрасной радиации).
Ультрафиолетовые лучи особенно широко используются для облучения детей. В первую очередь такое облучение показано, ослабленным, часто болеющим детям, проживающим в северных и средних широтах. При этом улучшается общее состояние детей, сон, нарастает вес, снижается заболеваемость, уменьшается частота катаральных явлений и, длительность заболеваний. Улучшается общее физическое развитие, нормализуется кровь, проницаемость сосудов.
Значительное распространение получило также ультрафиолетовое облучение горнорабочих в фотариях, которые в большом количестве организованы на предприятиях горнорудной промышленности. При систематическом массовом облучении шахтеров, занятых на подземных работах, отмечается улучшение самочувствия, повышение трудоспособности, уменьшение утомляемости, снижение заболеваемости с временной утратой трудоспособности. После облучения шахтеров повышается процентное содержание гемоглобина, появляется моноцитоз, уменьшается число случаев гриппа, снижается заболеваемость опорно-двигательного аппарата, периферической нервной системы, реже наблюдаются гнойничковые заболевания кожи, катары верхних дыхательных путей и ангины, улучшаются показания жизненной емкости, легких.
Применение ультрафиолетового излучения в медицине
Применение ультрафиолетовых лучей с терапевтической целью базируется в основном на противовоспалительном, антиневралгическом и десенсибилизирующем действии этого вида лучистой энергии.
В комплексе с другими лечебными мероприятиями ультрафиолетовое облучение проводится:
1) при лечении рахита;
2) после перенесенных инфекционных заболеваний;
3) при туберкулезных заболеваниях костей, суставов, лимфатических узлов;
4) при фиброзном туберкулезе легких без явлений, указывающих на активацию процесса;
5) при заболеваниях периферической нервной системы, мышц и суставов;
6) при заболеваниях кожи;
7) при ожогах и отморожениях;
8) при гнойных осложнениях ран;
9) при рассасывании инфильтратов;
10) в целях ускорения регенеративных процессов при травмах костей и мягких тканей.
Противопоказаниями к облучению являются:
1) злокачественные новообразования (так как облучение ускоряет их рост);
2) резкое истощение;
3) повышенная функция щитовидной железы;
4) выраженные сердечно-сосудистые заболевания;
5) активный туберкулез легких;
6) заболевания почек;
7) выраженные изменения центральной нервной системы.
Следует помнить, что получение пигментации, особенно в короткий срок, не должно быть целью лечения. В ряде случаев хороший терапевтический эффект наблюдается и при слабой пигментации.
Негативное действие ультрафиолета
Длительное и интенсивное ультрафиолетовое облучение может оказать неблагоприятное влияние на организм и вызвать патологические изменения. При значительном облучении отмечаются быстрая утомляемость, головные боли, сонливость, ухудшение памяти, раздражительность, сердцебиение, понижение аппетита. Чрезмерное облучение может вызвать гиперкальциемию, гемолиз, задержку роста и понижение сопротивляемости инфекциям. При сильном облучении развиваются ожоги и дерматиты (жжение и зуд кожи, диффузная эритема, отечность). При этом отмечается повышение температуры тела, головная боль, разбитость. Ожоги и дерматиты, возникающие под воздействием солнечной радиации, связаны преимущественно с влиянием ультрафиолетовых лучей. У работающих на открытом воздухе под влиянием солнечной радиации могут возникнуть длительно и тяжело протекающие дерматиты. Необходимо помнить о возможности перехода описываемых дерматитов в рак.
В зависимости от глубины проникновения лучей различных участков солнечного спектра могут развиться изменения глаз. Под влиянием инфракрасных и видимых лучей возникает острый ретинит. Хорошо известна так называемая катаракта стеклодувов, развивающаяся в результате длительного поглощения инфракрасных лучей хрусталиком. Помутнение хрусталика происходит медленно, главным образом у рабочих горячих цехов со стажем работы 20-25 лет и больше. В настоящее время профессиональные катаракты в горячих цехах встречаются редко вследствие значительного улучшения условий труда. Роговица и конъюнктива реагируют главным образом на ультрафиолетовые лучи. Эти лучи (особенно с длиной волны менее 320 mμ .) вызывают в ряде случаев заболевание глаз, известное под названием фотоофтальмии или электроофтальмии. Это заболевание наиболее часто встречается у электросварщиков. В таких случаях часто наблюдается острый кератоконъюнктивит, который обычно возникает через 6-8 часов после работы, нередко ночью.
При электроофтальмии отмечается гиперемия и припухание слизистой, блефароспазм, светобоязнь, слезотечение. Часто обнаруживается поражение роговицы. Продолжительность острого периода болезни 1-2 дня. У работающих на открытом воздухе при ярком солнечном освещении широких покрытых снегом пространств фотоофтальмия протекает иногда в виде так называемой снежной слепоты. Лечение фотоофтальмии заключается в пребывании в темноте, применении новокаина и холодных примочек.
Средства защиты от ультрафиолетового излучения
Для защиты глаз от неблагоприятного действия ультрафиолетовых лучей на производствах пользуются щитками или шлемами со специальными темными стеклами, защитными очками, а для защиты остальных частей тела и окружающих лиц — изолирующими ширмами, переносными экранами, спецодеждой.
В бытовых условиях рекомендуется использование солнцезащитных кремов, лосьонов, спреев с высоким фактором защиты, ношение солнцезащитных очков и закрытой одежды из натуральных тканей.
Источник