Какие частоты вредны для здоровья
Цель: показать, что низкие звуковые частоты ниже ПДУ, а также ряд бытовых и промышленных приборов с СВЧ ЭМП ниже ПДУ негативно влияют на человека.
Введение
Как известно, работа с виброприборами со среднечастотным диапазоном 30-125 Гц приводит к развитию сосудистых, нервно-мышечных, костно-суставных и других нарушений через 12–15 лет [12]. Законом установлено, что «условия работы с машинами, механизмами, установками, устройствами, аппаратами, которые являются источниками физических факторов воздействия на человека (такие как шум), не должны оказывать вредное воздействие на человека» [18].
Санитарными нормами установлены нормы допустимого шума в жилых зданиях в дневное и ночное время, превышение которого запрещается [1]. Допустимые уровни шума в жилых помещениях и на территории жилой застройки предусмотрены в [15].
Для звуковых волн в жилых и рабочих помещениях в СанПиН приняты ограничения [13]. Указывается, что, например, для творческой работы уровень шума частоты 31,5 Гц не должен превышать 86 дБ, а для частоты 500 Гц – 49 дБ и т.д.
В [10] указывается на необходимость спектрального анализа шумов в санитарном надзоре, но де исследуется действие резонансный частот.
В СССР был принят предельно допустимый уровень (ПДУ) плотности потока мощности (ППМ) – 10 мкВт/см2, в США – 10 мВт/см2. В ряде стран Западной Европы и США в качестве исходного критерия нормирования закладывался «принцип тепловой нагрузки», который учитывал лишь нарушение теплового гомеостаза организма. Этот подход был использован, например, в Великобритании, где до 1998 г. ПДУ для населения составлял 10 мВт/см, для детей допускалось облучение до 5 мВт/см2. В дальнейшем Великобритания перешла на общеевропейский стандарт, согласно которому для частотного диапазона свыше 400 МГц допускается облучение населения до 1 мВт/см2. Допустимые уровни воздействия на работников и требования к проведению контроля на рабочих местах для электромагнитных полей радиочастот изложены в ГОСТ 12.1.006-84.ПДУ в РФ для населения составляет 10 мкВт/см2[14].
Крайне высокочастотное (КВЧ) электромагнитное поле (ЭМП) ниже ПДУ может негативно влиять на организм [17]. Тем не менее КВЧ-поле используется при лечении самых разнообразных заболеваний, включая злокачественные новообразования [16].
При лечении туберкулеза и других заболеваний также широко используется как вспомогательная сантиметроволновая (СМВ), так и дециметроволновая (ДМВ) терапия. Применяются достаточно большие мощности, чтобы вызвать разогрев. Поскольку разогрев приводит к уменьшению глубины проникновения волн, в случае сантиметровых волн (чем выше частота, тем меньше глубина проникновения) используют слаботепловую СМВ-терапию. Для СМВ-терапии используют аппарат «Луч-4», с выходной мощностью 0,7–20 Вт и плотностью потока мощности 7-200 мВт/см2, что многократно превышает ПДУ. В связи с этим введены строгие правила техники безопасности.
Аппараты СМВ- и ДМВ-терапии должны помещаться в объем, изолированный материалом из хлопчатобумажной ткани с микропроводом. Излучатель во время процедур должен быть направлен в сторону наружной стенки. При контактном расположении излучателя портативные аппараты могут эксплуатироваться без экранирующей кабины, но они должны быть удалены от рабочего места медсестры на 2–3 м. Величина предельно допустимого уровня (ПДУ) плотности потока мощности (энергии): при облучении в течение всего рабочего дня – 10 мкВт/см2; при облучении не более 2 ч за рабочий день 100 мкВт/см2; при облучении не более 20 мин за рабочий день – 1 мВт/см2 (при условии использования защитных очков, типа ОРЗ-5). Следует избегать прямого воздействия дециметровых волн большой интенсивности на глаза и половые органы.
Для ДМВ-терапии приняты дополнительные правила: процедуры разрешается проводить только на стульях и кушетках, изготовленных из изоляционного материала; нижний край штор экранирующей кабины должен отстоять от пола не более чем на 2 см; края шторы, образующие вход в кабину, должны заходить друг за друга минимум на 10–15 см; пациент должен находиться как можно дальше от экранирующих поверхностей, чтобы максимально исключить действие не учитываемой рассеянной энергии; во время процедуры пациент не должен касаться труб водопровода, канализации и отопления; при контактной методике воздействия нельзя сильно прижимать излучатель к телу, его нужно устанавливать, чуть касаясь кожи или слизистой оболочки, сильное прижатие излучателя может привести к нарушению регионарного кровообращения или даже к ожогу, который может проявиться не сразу, а через 1–2 дня при последующих процедурах; рабочую поверхность излучателей необходимо обрабатывать дезинфицирующим раствором, защитный колпачок от полостных излучателей после проведения процедуры дезинфицируют путем кипячения в воде; в работе аппаратов необходимо делать перерывы на 10 мин. после каждого часа работы [3].
Опасные для человеческого организма сверхвысокие частоты ЭМП используются в ряде других приборов.
Радары работают на частотах 0.5 ГГц – 15 ГГц, системы спутниковой связи – примерно 2.38 ГГц, СВЧ-печи – 2.45 ГГц (хотя последнее следует исключить, они имеют несколько уровней защиты).
Развитие производства энергосберегающих ламп в направлении СВЧ было заброшено. Правда, не по причинам, связанным с безопасностью.
СВЧ-излучение ламп подсветки ЖК-мониторов – порядка 0,5 мВт, его не стоит опасаться также в виду того, что оно является паразитным, без фиксированной частоты.
Роутеры Wi-Fi – 2.4-2.4835 ГГц (с частотой шага 5МГц), 5.18-5.24ГГц и 5.745-5.825ГГц.
Системы сотовой связи используют частоты 0,463 ГГц – 1,99 ГГц. Стандарты GSM-850/900 нас не интересует. Стандарт GSM-1800: частоты передачи MS и приёма BTS uplink – 1.71-1.785 ГГц; downlink – 1.805-1.880 ГГц. Стандарт GSM-1900, используется в США, Канаде, отдельных странах Латинской Америки и Африки: частоты передачи MS и приёма BTS – 1.85-1.91 ГГц; 1.93-1.99 ГГц.
Для сетей 3-го поколения 3G/UMTS 2100 – 1.92-2.17 ГГц. Частоты 4G «Основа Телеком» LTE TDD – 2.3-2.34 ГГц. Частотный спектр для сетей 4-го поколения, 4G, LTE-частоты: (LTE FDD) в диапазоне 2.6 ГГц (band 7), за исключением сетей LTE TDD — МТС в Москве (2.6 ГГц, band 38) и «Вайнах Телеком» в Чеченской Республике (2.3 ГГц, band 40).
В НИОКР (со сверхвысокочастотным ЭПР и др.) исследователи могут использовать определенные сверхвысокие частоты, негативно влияющие на организм. Например, СВЧ ЭМП, модулированное частотно мегагерцами, воздействует на центральную и вегетативную нервные системы. Так, Алан Фрей обнаружил, действие такого излучения может вызвать ощущение укола иголкой, удара палкой или ощущение звука, причем даже у глухих (A. Frey, AnnalsofPhysics, 1960, 1962; см. также [19–23]).
В СВЧ-диапазоне работают процессоры современных компьютеров.
Celeron-450 – тактовая частота 0,45ГГц, Pentium (или 586, или Р5) – частоты: 60, 66, 75, 90, 100, 120, 133, 150, 166, 200 Мгц, PentiumPro — 150, 166, 180, 200 МГц, PentiumII – 233, 266, 300, 333, 350, 400, 450 Мгц,CeleronI – 266, 300, 333, 366, 400, 433, 466, 500, 533 МГцCeleronII — 566, 600, 633, 667, 700, 733, 766, 800, 850, 900. Pentium III – 533, 550, 600, 650, 667, 700, 733, 750, 800, 850, 866, 933 МГц, 1, 1.13, 1.2 ГГц и выше. Эти модели, а также более ранние, нас не интересуют.
Pentium IV– 1.3, 1.4, 1.5, 1.8, 1.9, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.06, 3.2, 3,4 и более ГГц.
Центральные процессоры, работающие с системной шиной с частотой 800 МГц, могут иметь следующие частоты: 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6 ГГц. С системной шиной 533 МГц – 2.26, 2.4, 2.53, 2.66, 2.8, 3.06 ГГц. С системной шиной 400 МГц – 1.7, 1.8, 1.9, 2.0, 2.2, 2.4, 2.5, 2.6 ГГц.
MobilePentium4-M– 1.4-2.6 ГГц, Pentium 4F – 3.2-3.6 ГГц, Pentium4F, D0, D – 2.8-3.4 ГГц
PentiumExtremeEdition – 3.2, 3.46, 3.73 ГГц.
Xeon: Nocona, Irwindale, Cranford, Potomac, PaxvilleDP (2.8 ГГц), PaxvilleMP (2.67–3.0 ГГц), Dempsey (2.67–3.73 ГГц).
Woodcrest – 1.6–3.0 ГГц; Clovertown – 1.6-2.66 ГГц; PentiumDual-Core – 1.60; 1.73; 1.86 ГГц,
(Xeon LV) (Sossaman) 2.0 ГГц
Intel Core2 имеет модели: Conroe (1.86–3.0ГГц), Allendale (1.6–2.6 ГГц), Conroe XE (2.93, 3.2 ГГц,), Merom (1.06–2.6 ГГц), Kentsfield (2.4–3.0 ГГц), Wolfdale/Yorkfield (2.53–3.33 ГГц),
PentiumDualCore имеет модели: Merom-2M (1.46–1.86 ГГц), Allendale (1.6–2.4 ГГц), Wolfdale (2.8–2.93 ГГц).
Intel Atom – 0.8–2.0 ГГц; Diamondville (1.6–1.66 ГГц).
Intel Core i3имеетмодели: Clarkdale (2.93–3.33 ГГц,), Arrandale (1.2–2.53 ГГц).
Intel Core i5 имеет модели: Lynnfield (2.4–2.8 ГГц), Clarkdale (3.2–3.6 Ггц), Arrandale (1.06–2.67 ГГц).
Intel Core i7, имеет модели: Gulftown (3.2–3.46 ГГц), Bloomfield (2.66–3.33 ГГц), Lynnfield (2.53–3.06 ГГц), Arrandale (1.06–2.8 ГГц).
IntelCorei7 ExtremeEditionимеетмодели: Bloomfield (3.2–3.33 ГГц), Gulftown (3.33–3.46 ГГц).
Intel Core i3 – 2.5–3.4 ГГц, Intel Core i5 — 2.3–3.3 ГГц, Intel Core i7 – 2.8–3.4 ГГц.
IntelCorei7 ExtremeEdition имеет модели: Bloomfield (3.2–3.33 ГГц), Gulftown (3.33–3.46 ГГц).
Итого, частоты процессоров охватывают набор частот 0,06 ГГц — 1,8 ГГц (мы увидим, что он нам не нужен) и дискретно-непрерывный диапазон 1,9–3,73 ГГц.
Потребляемая компьютером мощность – 60 Вт, подавляющий процент расходуется на тепло, на излучение остается порядка 0,5 Вт. Поскольку платы – многослойные, краски содержат тяжелые металлы, плюс экранирование металлического корпуса, на расстоянии 50 см от системного блока плотность потока мощности СВЧ излучения явно не превышает ПДУ.
Общая характеристика воздействия ЭМП компьютеров дана в [11], однако она не касается резонансного действия.
Анализ
Принятые 25.9.1985 (с изменениями от 18.1.1992 и 23.7.1993) правила обеспечивали недопущение выполнения в квартире, подвале или придомовой территории работ и иных действий, создающих повышенный шум и вибрацию. В новом Жилищном Кодексе отмечается лишь необходимость «осуществлять пользование жилыми помещениями с учетом соблюдения прав и законных интересов проживающих в жилом помещении граждан» [2].
Для звуковых волн по СанПиН – чем ниже частота, тем больше допустимая мощность [18]. Для 500 Гц, т.е. для пения в 1-й октаве, дневной допустимый уровень – 39 дБ, а для 31,5 Гц – 79 дБ. Для творческой деятельности, как мы видели выше, та же закономерность, хотя уже 55 дБ существенно снижает продуктивность умственной деятельности.
Частоты ниже 31,5 ГГц вообще не обозначены.
Между тем в случае резонансных инфразвуковых волн область резонанса для головы в положении сидя при вертикальных вибрациях располагается в зоне между 20–30 Гц, при горизонтальных – 1.5–2 Гц. Расстройство зрительных восприятий проявляется в частотном диапазоне между 60 и 90 Гц, что соответствует резонансу глазных яблок. Для органов, расположенных в грудной клетке и брюшной полости, резонансными являются частоты 3– 3.5 Гц. Для всего тела в положении сидя резонанс наступает на частотах 4–6 Гц.
Источник
Влияние акустических явлений на здоровье человека
Введение
Мир, окружающий нас, можно назвать миром звуков. Звучат вокруг нас голоса людей и музыка, шум ветра и щебет птиц, рокот моторов и шелест листвы. С помощью речи люди общаются, с помощью слуха получают информацию об окружающем мире. Не меньшее значение звук имеет для животных. С точки зрения физики, звук – это механические колебания, которые распространяются в упругой среде: воздухе, воде, твёрдом теле и т.п. Способность человека воспринимать упругие колебания, слушать их отразились в названии учения о звуке – акустика (от греческого akustikos – слуховой, слышимый).
Шум довольно распространен в наши дни. Шум – звук, в котором изменение акустического давления, воспринимаемое ухом, беспорядочно и повторяется через разные промежутки времени. Как и все физические явления, шум имеет и положительные качества и отрицательные. Человек слушает приятную музыку, чтобы расслабиться, снять усталость, поднять себе настроение. Отсюда можно сказать, что шум оказывает благотворное влияние на нас. Но шум имеет много вредных и опасных для человека свойств.
Глава 1. Акустические явления. Виды и их характеристики
Акустика — наука о звуке, изучающая физическую природу звука и проблемы, связанные с его возникновением, распространением, восприятием и воздействием. Акустика является одним из направлений физики (механики), исследующих упругие колебания и волны от самых низких (условно от 0 Гц) до высоких частот.
Звуком называют ощущение, воспринимаемое нашим органом слуха при ударе о барабанную перепонку его звуковых волн (ряд последовательных сгущений и разрежений воздуха), производимых вибрацией упругих тел; волны эти вызывают соответственные вибрационные колебания слуховых нервов. Строго говоря, звука не существует: он вызывается в самом ухе раздражением окончаний слуховых нервов передающимися ему колебаниями звучащего тела. Музыкальный звук ощущается при правильных, равномерных колебаниях барабанной перепонки уха, неправильные и неравномерные вибрации, равно как и смесь разных коротких звуков, производит впечатление шума. Орган слуха человека различает высокие и низкие звуки. Высокие звуки производятся быстрыми колебаниями, низкие более медленными. Самый низкий звук, или тон, различаемый еще человеческим ухом, обозначаемый тоном субконтра = С (С2), производится 16 колебаниями в секунду. Верхний предел слышимости звука, неодинаковый для различных индивидуумов, лежит между 16000 и 33000 колебаний в секунду, следовательно, приблизительно между С на седьмой черте и С на восьмой черте (С7 до С8). Отношение чисел колебаний двух звуков называется интервалом. Звук или тон, делающий вдвое большее число колебаний, чем другой звук в одинаковый с ним промежуток времени, называется октавой последнего звука. Так, напр., звук, делающий 800 колебаний в секунду, есть следующая, более высокая октава звука, делающего 400 колебаний в секунду.
1.1 Шум
В научной литературе дается понятие звука как колебания частиц в упругих средах, распространяющиеся в форме продольных волн, частота которых лежит в пределах, воспринимаемых человеческим ухом, т.е. в среднем от 16до 20000Гц. В воздухе при температуре о 0С и нормальном атмосферном давлении звук распространяется со скоростью 330м/с, в морской воде – около 1500м/с, в некоторых металлах скорость звука достигает 7000м/с. Упругие волны с частотой меньше 16Гц называют инфразвуками, а волны, частота которых превышает 20000Гц – ультразвуками. Звук может распространяться в газообразной и жидкой среде только в виде продольных волн, а в твердых телах помимо продольных волн возникают также и поперечные волны.
1.2 Инфразвук
Инфразвук – это звуковые волны, имеющие частоту ниже воспринимаемой человеческим ухом. Хотя он и не слышен, он действует на человека как физическая нагрузка. При этом у человека возникает утомление, головокружение, вестибулярные расстройства, нарушения работы сердечно– сосудистой и нервной системы, снижается острота слуха. Особенно неблагоприятен инфразвук частотой 2-15 Гц, так как вызывает в организме резонансные явления. При этом могут возникать нарушения ритма дыхания, болезненные ощущения в груди, животе, пояснице и в некоторых мышцах.
1.3 Ультразвук
Ультразвук – неслышимые человеческим ухом упругие волны. Возникает при работе реактивных двигателей, газовых турбин, сирен, сварочных машин, станков для сверления и др. Низкочастотные ультразвуковые колебания оказывают на людей такое же действие, как шум. Исследования последних лет показали, что человеческое ухо может воспринимать и ультразвук, но лишь в том случае, если он проходит через кости черепа.
Хотя о существовании ультразвука известно давно, его практическое использование достаточно молодо. В наше время ультразвук широко применяется в различных физических и технологических методах. Так, по скорости распространения звука в среде судят о её физических характеристиках. Измерения скорости на ультразвуковых частотах позволяет с весьма малыми погрешностями определять, например, адиабатические характеристики быстропротекающих процессов, значения удельной теплоёмкости газов, упругие постоянные твёрдых тел.
1.4 Мобильные телефоны
Мобильный телефон — самый распространенный «вредитель» для нашего организма. В среднем за месяц человек говорит по мобильному телефону около 100 минут. Этого вполне достаточно, чтобы навредить психике и организму в целом. Защита: уровень громкости гарнитуры мобильных телефонов не должен превышать 10 дБ (то есть уровень громкости звонка и разговора с абонентом не должен превышать средний). В противном случае при частых звонках и разговорах могут начаться нервные расстройства.
1.5 Наушники и МП3 плееры
Главное проблема прослушивания музыки в наушниках – вкладышах состоит в том, что человек не способен контролировать уровень громкости. То есть ему может казаться, что музыка играет тихо, а на самом деле у него в ушах будет, чуть ли не 100 децибел.
Расспросив многих своих друзей и знакомых, я пришел к выводу: все владельцы МР3 плееров используют устройство не только для простого прослушивания музыки, а скорее для создания вокруг себя некой границы или ауры для защиты от окружающего мира. Если в наушниках играет любимая музыка, то человек чувствует себя более защищенным, это помогает ему отключиться от внешних источников раздражения, от уличного шума, от суеты. В итоге у современной молодежь начинают возникать проблемы со слухом уже в 30 лет. Во избежание развития глухоты, ученые советуют покупать специальные фильтры для наушников, которые препятствуют проникновению постороннего шума и, таким образом, устраняют необходимость увеличения звука.
Глава 2. Влияние акустический явлений на организм
Шум звукового диапазона приводит к снижению внимания и увеличению ошибок во время выполнение различных видов работ. Шум замедляет реакцию человека на поступающие от технических устройств сигналы. Шум угнетает центральную нервную систему, вызывает изменения скорости дыхания и пульса, способствует нарушению обмена веществ, возникновению сердечно-сосудистых заболеваний, язвы желудка, гипертонических болезни.
Длительный шум неблагоприятно влияет на орган слуха, понижая чувствительность к звуку. Он приводит к расстройству деятельности сердца, печени, к истощению и перенапряжению нервных клеток. Ослабленные клетки нервной системы не могут достаточно четко координировать работу различных систем организма. Отсюда возникают нарушения их деятельности.
Уровень шума измеряется в единицах, выражающих степень звукового давления, – децибелах. Это давление воспринимается не беспредельно. Уровень шума в 20-30 децибелов практически безвреден для человека, это естественный шумовой фон. Что же касается громких звуков, то здесь допустимая граница составляет примерно 80 децибелов. Звук в 130 децибелов уже вызывает у человека болевое ощущение, а 150 становится для него непереносимым. Недаром в средние века существовала казнь «под колокол». Гул колокольного звона мучил и медленно убивал осужденного.
Очень высок уровень и промышленных шумов. На многих работах и шумных производствах он достигает 90-110 децибелов и более. Не намного тише и у нас дома, где появляются все новые источники шума – так называемая бытовая техника.
Долгое время влияние шума на организм человека специально не изучалось, хотя уже в древности знали о его вреде и, например, а античных городах вводились правила ограничения шума.
В настоящее время ученые во многих странах ведут различные исследования с целью выяснения влияния шума на здоровье человека. Их исследования показали, что шум наносит ощутимый вред здоровью человека, но и абсолютная тишина пугает и угнетает его. Так, сотрудники одного конструкторского бюро, имевшего прекрасную звукоизоляцию, уже через неделю стали жаловаться на невозможность работы в условиях гнетущей тишины. Они нервничали, теряли работоспособность. И, наоборот, ученые установили, что звуки определенной силы стимулируют процесс мышления, в особенности процесс счета.
Каждый человек воспринимает шум по-разному. Многое зависит от возраста, темперамента, состояния здоровья, окружающих условий.
Некоторые люди теряют слух даже после короткого воздействия шума сравнительно уменьшенной интенсивности.
Постоянное воздействие сильного шума может не только отрицательно повлиять на слух, но и вызвать другие вредные последствия – звон в ушах, головокружение, головную боль, повышение усталости.
Очень шумная современная музыка также притупляет слух, вызывает нервные заболевания.
Шум обладает аккумулятивным эффектов, то есть акустические раздражение, накапливаясь в организме, все сильнее угнетают нервную систему.
Поэтому перед потерей слуха от воздействия шумов возникает функциональное расстройство центральной нервной системы. Особенно вредное влияние шум оказывает на нервно-психическую деятельность организма.
Процесс нервно-психических заболеваний выше среди лиц, работающих в шумных условиях, нежели у лиц, работающих в нормальных звуковых условиях.
Шумы вызывают функциональные расстройства сердечно-сосудистой системы; оказывают вредное влияние на зрительный и вестибулярный анализаторы, снижает рефлекторную деятельность, что часто становится причиной несчастных случаев и травм.
Как показали исследования, неслышимые звуки также могут оказать вредное воздействие на здоровье человека. Так, инфразвуки особое влияние оказывают на психическую сферу человека: поражают все виды интеллектуальной деятельности, ухудшаются настроение, иногда появляется ощущение растерянности, тревоги, испуга, страха, а при высокой интенсивности – чувство слабости, как после сильного нервного потрясения. Даже слабые звуки инфразвуки могут оказывать на человека существенное воздействие, в особенности, если они носят длительный характер. По мнению ученых, именно инфразвуками, неслышно прикасающимися сквозь самые толстые стены, вызываются многие нервные болезни жителей крупных городов. Ультразвуки, занимающие заметное место в гамме производственных шумов, также опасны. Механизмы их действия на живые организмы крайне многообразны. Особенно сильно их отрицательному воздействию подвержены клетки нервной системы.
Шум коварен, его вредное воздействие на организм совершается незримо, незаметно. Организм человека против шума практически беззащитен. В настоящее время врачи говорят о шумовой болезни, развивающейся в результате воздействия шума с преимущественным поражением слуха и нервной системы. (см. приложение 5)
Существует большое количество источников инфразвукового излучения естественной природы. Как правило, интенсивность такого излучения по крайней мере на порядок меньше инфразвука от ядерных взрывов.
Инфразвуковые волны наблюдаются во время периодов большой геомагнитной активности: период инфразвука составляет 40 – 80 с, амплитуда – около 0,1 Па. Происхождение этих инфразвуков, относящихся к диапазону дробных герц, возможно связано с образованием ударных волн.
В исследованиях последних лет была подтверждена гипотеза поисковой активности мышц при построении движений. Так, например, для частного вида движения – сохранения вертикальной позы человека – необходима непрерывная деятельность определённых групп мышц. Мышцы при этом, меняя свое напряжение, как бы осуществляют поиск в процессе минимизации отклонения общего центра тяжести человеческого тела от положения равновесия.
Инфразвуковые колебания воздействуют на весь организм человека, вызывая резонансные явления как всего человеческого тела, так и отдельных его частей, внутренних органов и систем, вызывая в зависимости от амплитудно-частотных характеристик инфразвука и продолжительности воздействия те или иные нарушения в организме. При этом у человека увеличивается общий расход энергии, так как под действием низкочастотных колебании й повышается среднемышечная напряженность. Поэтому можно полагать, что инфразвуковые колебания воспринимаются человеком как физическая нагрузка, которую можно сравнить с другими видами нагрузки, как, например, физическая работа, тепловая нагрузка и др.
Во время инфразвукового воздействия тело человека испытывает ритмическое изменение давления (компрессионно-декомпрессионный эффект). При этом подвергаются раздражению механорецепторы внутренних органов и тканей, мышц и кожи, в результате чего рефлекторным путем в организме возникает ряд сдвигов.
Наиболее общими физиологическими эффектами, наблюдаемыми при действии инфразвуковых колебаний на человеческий организм, являются изменение ритмов дыхания и биений сердца, расстройства желудка и центральной нервной системы, головные боли.
По характеру биологического воздействия инфразвука можно выделить три основные зоны:
- Зона «информационного» воздействия. Это область относительно слабых инфразвуков, длительно действующих на объект. Энергия инфразвука здесь играет второстепенную роль и инфразвук следует рассматривать как определенные сигналы, поступающие в организм извне. Внешним проявлением «информационного» воздействия инфразвука может быть чувство беспокойства, неприятные ощущения, повышенная утомляемость, ослабление памяти, психологические сдвиги и т.д.
- Зона физиологических изменений. Здесь важную роль играет энергетический фактор инфразвуковых колебаний. При сравнительно невысоких акустических энергиях воздействие инфразвука проявляется прежде всего в функциональных нарушениях органа слуха, а также вестибулярного аппарата, появляется звон и боль в ушах. Ухудшается равновесие и координация движений, изменяется четкость зрения, видоизменяется голос, увеличивается порог слышимости для звуковых частот. При более высоких акустических энергиях возникают головная боль, головокружение, тошнота, кашель, нарушение дыхания и т.д. После прекращения инфразвуковых воздействий указанные симптомы через некоторое время могут исчезнуть без видимых последствий.
- Зона поражающего действия инфразвука. При сверхвысоких акустических уровнях могут происходить перфорация перепонок, увеличение легких, разрыв альвеол и прекращение дыхания, повреждение мозга и сердечно-сосудистой системы. Указанные явления могут приводить к гибели человека или длительному выходу из строя.
2.1 Допустимые нормы
Чтобы иметь представление об опасности, которую представляет для слуха шум, необходимо ознакомить с допустимыми нормами шума для разного времени суток, а также узнать, какой уровень шума в децибелах производят те или иные звуки. Таким образом можно начать понимать, что является безопасным для слуха, а что представляет опасность. А с пониманием придет и умение избегать вредного воздействия звука на слух.
По санитарным нормам, допустимым уровнем шума, который не наносит вреда слуху даже при длительном воздействии на слуховой аппарат, принято считать: 55 децибел (дБ) в дневное время и 40 децибел (дБ) ночью. Такие величины нормальны для нашего уха, но, к сожалению, они очень часто нарушаются, особенно в пределах больших городов.
Если уровень шума достигает 70-90 децибел (дБ) и продолжается довольно длительное время, то такой шум при длительном воздействии может привести к заболеваниям центральной нервной системы. А длительное воздействие шума уровнем более 100 децибел (дБ) может приводить к существенному снижению слуха вплоть до полной глухоты. Поэтому вреда от громкой музыки мы получаем гораздо больше, чем удовольствия и пользы. (см. приложение 6)
2.2 Польза и вред
Звуки, вызывающие отрицательные эмоции: шум строительной и ремонтной техники, всё, что издаёт характерный металлический лязг и звон, — дрель, молоток, электропила. По уровню раздражения хуже только детский плач. Зато смех ребёнка стоит первым в списке приятных звуков вместе с пением птиц и журчанием воды.
Даже звучание музыкальных инструментов вызывает негативные эмоции, если тот или иной инструмент связан с неприятными воспоминаниями. Музыка — набор звуков, которые составляют мелодию и ритм. Учёные доказали, что музыка положительно влияет на человека, животных и даже растения.
Слишком громкий звук-выстрел на близком расстоянии или шум реактивного двигателя способен повредить слуховой аппарат. Без последствий человек воспринимает определённый диапазон громкости. Если громкие звуки окружают повседневно, например, в метро, человек постепенно перестаёт воспринимать тихие, теряя слух и расшатывая нервную систему.
Если человек привык к городскому шуму, то, попав в деревню, где ночью тишина, он спит намного хуже, слышит мельчайшие шорохи. Поэтому вредно как перемещение деревенского жителя в городскую среду, так и наоборот.
Чтоб защититься от уличного шума, в городской квартире устанавливают шумоизоляционные окна и двери. Межкомнатные двери должны быть не тоньше сорока сантиметров.
Психологи и врачи советуют уделять внимание тому, что и как слушать. Ведь от окружающих звуков зависит настроение человека, здоровье, работоспособность и успех в жизни.
Глава 3. Экспериментальная часть
Для измерения уровней шума объективным методом пользуются шумомерами. В этих приборах шум воспринимается с помощью широкополосного микрофона, который преобразует звуковые колебания в электрические. Последние усиливаются и подаются на выпрямитель стрелочного прибора(измеритель).
Мы измеряли уровень шума вторым методом. Мы использовали два шумомера, установленные в мобильный телефон, благодаря приложениям «шумомер» и «sound Meter».
Результаты исследования показывают, что в учебных кабинетах превышен допустимый уровень шума. Также значительно выше допустимого уровня уровень шума в кабинете музыки, в спортзале. В коридорах во время перемен, в столовой во время питания учащихся уровень шума приближен к допустимой норме.
3.1 Виды источников шумов в школе
В ходе наших наблюдений мы выявили, что основными источниками звуков и шумов в школе являются разговоры учителей, учащихся, крики, звонок (на урок и с урока), компьютеры, музыка на дискотеке, сотовые телефоны, наушники от сотовых телефонов, плееры, музыкальные центры, радиоприемники, магнитофоны.
3.2 Влияние акустических явлений на состояние учеников
Длительное воздействие шума оказывает влияние на психологическое состояние: учащиеся отмечают жалобы на быструю утомляемость, снижение внимания и сосредоточенности и работоспособности, ухудшение настроения, нарушение сна, общую слабость, повышение раздражительности.
Многим детям нравятся громкие звуки. Многих детей раздражают громкие разговоры, смех, крики, галдеж, звуки игр на компьютере, громкая музыка и т.д. Большинство учащихся осознают негативное влияние звука на состояние здоровья. Часть учеников не знают о вредном воздействии шума на состояние здоровья. Многие согласились с тем, что шум вызывает усталость после уроков и может стать причиной болезни.
Заключение
Шум, каким бы он ни был, всегда будет оказывать различное воздействие на разных людей. Все зависит от индивидуальной восприимчивости людей. Одни очень восприимчивы, шумы их раздражают и вызывают желание покинуть помещение, а другие же способны продолжать заниматься своими делами, привыкнув к такому, пусть и неприятному, фону. Это зависит от внутренних параметров восприятия. Именно поэтому шум, который издает сам человек, может быть не раздражающим, а вот то, что доносится извне, может мешать. Разумеется, в этом вопросе не последнюю роль играет и то, какой это шум: если у соседей непрерывно плачет ребенок или раздается звук перфоратора, это, чаще всего, воспринимается наиболее беспокойно.
Для полного восстановления организма от усталости и напряжения, бытовых проблем и забот просто необходима тишина. Отсутствие раздражителей и вибраций хорошо влияет на нервную систему, помогает привести мысли в порядок, получить здоровый крепкий сон. Чем выше уровень шумов, тем хуже для нашего здоровья.
Сильная перегрузка слухового анализатора приводит к перевозбуждению нервной системы, изменениям психического состояния, к снижению адаптационных ресурсов организма, а значит, к переутомлению. Таким образом, исследование показало, что шумовое загрязнение атмосферы значительно отражается на здоровье человека.
Источник