Качественное и количественное определение витамина С в продуктах и оценка обеспеченности рациона школьника и студента витамином С
презентация к уроку по биологии по теме
Исследование проводилось в течение двух лет, закончилось в 2009 году. Сырова Алена Владимировна проводила исследование во Владимирском государственном гуманитарном университете.
Скачать:
Вложение | Размер |
---|---|
tvennoe_i_kolichestvennoe_opredelenie_vitamina_s_v_produktah_i_ocenka_obespe.ppt | 1.77 МБ |
Предварительный просмотр:
Подписи к слайдам:
Качественное и количественное определение витамина С в продуктах и оценка обеспеченности рациона школьника и студента витамином С
Введение Актуальность проблемы: определение динамики содержания витаминов в продуктах питания является актуальной, так как в настоящее время в ряде случаев встречается гиповитаминоз аскорбиновой кислоты. Цель работы: оценка обеспеченности аскорбиновой кислотой суточного рациона современного школьника и студента и определение аскорбиновой кислоты в моче. Задачи: — Провести аналитический обзор современных литературных источников по теме исследования. — Оценить содержание витамина С в продуктах питания с помощью аналитических методов количественного анализа. — Определить содержание аскорбиновой кислоты в моче у школьников и студентов. — Подготовить рекомендации для образовательных учреждений по витаминизации школьников и студентов.
Содержание аскорбиновой кислоты в овощах и фруктах Определение содержания витамина С осуществлялось четырежды: в октябре 2007 года, июне 2008 года, сентябре 2008 года и в марте 2009 года. То есть проверка степени сохранности была двоекратной. Используемым материалом были: овощи и фрукты — картофель, морковь, лук, чеснок, огурец, томат, зеленый перец, красный перец, зеленое яблоко, красное яблоко, апельсин, киви, белая смородина. Отбор материала был произвольным и однократным. В работе был использован титрометрический метод анализа . В качестве титровального раствора выступал 2,6-дихлоридофенол, который при взаимодействии с витамином С окрашивал исследуемый экстракт в розовый цвет. Установку титра этого раствора производили по аскорбиновой кислоте в день работы. Опыт осуществлялся в два этапа: — Качественное определение витамина С — Количественное определение витамина С
Химическая природа витамина С (восстановленная форма) δ-Лактон 2,3-дегидро-L-гулоновой кислоты
Изменение концентрации витамина С в овощах (мг/100гр)
Степень сохранности витамина С (%)
Изменение концентрации витамина С во фруктах (мг/100гр)
Степень сохранности витамина С (%)
Степень сохранности АК после 6-ти и 8-ми месячных сроков хранения урожая (%)
Содержание аскорбиновой кислоты в первых блюдах Вторую часть исследования мы проводили в октябре 2008 года на базе средней школы № 15 и ВГГУ. Был использован титрометрический метод анализа с помощью реактива Тильманса. Количественное содержание витамина С в первых блюдах оценивалось в жидкой и твердой части.
Наименование блюда Масса жидкой части, г Количество витамина, мг % Масса твердой части, г Количество витамина, мг % Общая количество витамина, мг % Анализ первых блюд из столовой ВГГУ 1. Грибной суп 255,5 14,976 137,5 5,225 20,201 2. Щи 235 24,5575 158 13,509 38,0665 3. Картофельный суп 216 7,94124 156 8,892 16,83324 4. Борщ 247 14,079 143 4,0755 18,1554 Анализ первых блюд из столовой школы № 15 1. Рыбный суп 146,4 4,371 53,81 2,304 16,674 2. Щи 231 38,808 147 16,464 55,272 3. Картофельный суп 265 8,162 91 8,108 16,27 4. Борщ 162,7 48,159 115,9 13,908 62,067
Содержание аскорбиновой кислоты в моче Определение аскорбиновой кислоты в моче проводилось в апреле 2009 года. В испытуемую группу были включены школьники лицея-интерната № 1 и студенты ВГГУ. АК в моче – показатель обеспеченности организма данным витамином.
Концентрация АК (мг %) в моче у студентов ( n =20) и школьников ( n =30) Испытуемая группа Нормальное Содержание, М (распространенность в группе) Содержание ниже среднего , М (распространенность в группе) Низкое Содержание , М (распространенность в группе) Минимальное содержание , М (распространенность в группе) Среднее значение для всей группы Школьники — 5,72 ( n =2, 6.9% ) 2,046 ( n =17, 55.7%) 0,82 ( n =11, 37.93%) 2 ,862 Студенты 29,5 ( n =3, 15.8%) 6,45 ( n =3, 15.8%) 2,72 ( n =9, 47.4%) 0,726 ( n =4, 21.05%) 7,11
Соотношение групп студентов (%)
Содержание АК в моче школьников (%)
Выводы В ходе проведённого исследования мы выявили что, при хранении содержание аскорбиновой кислоты в овощах и фруктах снижается. Выявлено недостаточное содержание витамина в готовых блюдах, поэтому необходим о включать в рацион свежие овощи и фрукты, и витаминные препараты. У всех испытуемый содержание АК в моче очень минимально, это говорит о низком уровне обеспеченности организма, что может привести к нарушению обменных процессов в организме и развитию заболеваний.
По теме: методические разработки, презентации и конспекты
Форма урока: практическое заниятие. Цели урока: научиться рассчитывать приход энергии в организм школьника и расход энергии в зависимости от энергетических затрат, а также научиться определять примерн.
Данную таблицу могут использовать учащиеся 9-х классов при подготовке к ГИА (задание С3 — 1 вариант; задания С3 и С4 — 2 вариант).
Качественные реакции для определения катионов и анионов электролитов (кислот, солей и щелочей).
Задачи С5, подготовка к ЕГЭ, Лекция №3, 10-11 класс.
Для освоения темы учащимся необходимо поссмотреть презентацию и выполнить лабораторную работу.
Программа предмета «Качественный и количественный анализ в химии» предназначена для учащихся 11 класса и носит предметно-ориентированный характер. Курс рассчитан на 35 часов (1 ч/нед). Сод.
Источник
АСКОРБИНОВАЯ КИСЛОТА
Аскорбиновая кислота (Acidum ascorbinicum; синоним витамин C) — органическое соединение, относящееся к витаминам и содержащееся в большинстве растений. Отсутствие его в пище вызывает развитие специфического заболевания — цинги (см.), а недостаточность приводит к развитию гиповитаминоза.
В 1923—1927 годы Зильва (S. S. Zilva) впервые выделил из лимонного сока вещество с сильным антискорбутным свойством. Он же установил основные свойства этого вещества. В 1930—1933 годы Тилльманс (J. Tillmans) показал обратимое окисление этого вещества. В 1928—1933 годы Сент-Дьёрдьи (А. Szent-Györgyi) выделил в кристаллическом виде из надпочечников быка, а также из капусты и паприки вещество, названное им «гексуроновой кислотой», получившей затем название «аскорбиновая кислота». Оно оказалось идентичным с антискорбутным веществом Зильвы.
Аскорбиновая кислота является производным L-гулоновой кислоты (2-3-эндиол-L-гулоно-1,4-лактон). Наиболее активной формой является L-аскорбиновая кислота. Эмпирическая формула C6H8O6, структурная формула:
Молекулярный вес аскорбиновой кислоты —176,1. Удельное вращение в воде —[а]20D + 23°; t°пл 192°. Это одноосновная кислота с константой диссоциации pKa —4,25 в воде. В сильно кислой среде аскорбиновая кислота обладает максимумом поглощения при 245 нм, сдвигающимся к 365 нм в нейтральной среде и к 300 нм в щелочной. В чистом виде аскорбиновая кислота представляет собой белые кристаллы кислого вкуса, стойкие в сухом виде и быстро разрушающиеся в водных растворах.
1 г аскорбиновой кислоты растворяется в 5 мл воды, 25 мл этилового спирта или 100 мл глицерина. Аскорбиновая кислота нерастворима в бензоле, хлороформе, эфире, петролейном эфире и жирах. Аскорбиновая кислота реагирует с катионами металлов, образуя аскорбинаты с общей формулой C6H7O6M. Аскорбиновая кислота легко окисляется кислородом воздуха. Окисление аскорбиновой кислоты ускоряется в нейтральных и щелочных растворах. Оно катализируется светом, ионами меди, железа, серебра и ферментами растений: аскорбиноксидазой и полифенолоксидазой. При окислении аскорбиновая кислота переходит в дегидроаскорбиновую кислоту, обладающую столь же высоким С-витаминным действием, что и аскорбиновая кислота. Дегидроаскорбиновая кислота быстро восстанавливается в тканях. Она не содержит конъюгированной системы и не обнаруживает поглощения в ультрафиолете. Наряду с аскорбиновой кислотой и дегидроаскорбиновой кислотой в растительных продуктах встречается связанная с белком форма Аскорбиновая кислота — аскорбиген,— устойчивая к окислению. При необратимом окислении дегидроаскорбиновая кислота после раскрытия лактонового кольца при pH более 4 переходит в 2,3-дикетогулоновую кислоту, а затем в щавелевую и омгреоновую кислоту. Окисление аскорбиновой кислоты задерживается тиосульфатом, тиомочевиной, тиоацетатами, флавоноидами, о-дифенолами, метафосфорной кислотой, кислыми полисахаридами и др. Большинство белков и аминокислот также задерживает окисление аскорбиновой кислотой путем образования комплексов либо с самой аскорбиновой кислотой, либо с медью. Аскорбиновая кислота легко восстанавливает азотнокислое серебро, растворы брома, йода и 2,6-дихлорфенолин-дофенола. Аскорбиновая кислота настолько эффективна в качестве восстановителя, что нашла широкое применение в аналитической химии при определении ряда минеральных элементов и в полярографических исследованиях большого числа веществ, в частности урана и других соединений. Аскорбиновая кислота широко распространена в природе (см. таблицу). Она содержится в растениях, главным образом в восстановленной форме. Из органов животных богаты аскорбиновой кислотой надпочечники, гипофиз, хрусталик, печень. При кулинарной обработке теряется в среднем до 50% аскорбиновой кислоты. Еще больше теряется при стоянии готовых блюд. Ряд стабилизаторов, находящихся в белке яиц, мясе, печени, крупах, твороге, крахмале, поваренной соли, способствует сохранению аскорбиновой кислоты при приготовлении пищи. Длительному сохранению аскорбиновой кислоты способствуют: квашение, замораживание, дегидратация, баночное консервирование, варка ягод и фруктов с сахаром (см. также Витаминизация пищевых продуктов).
Аскорбиновую кислоту получают синтетически из D-глюкозы, восстанавливаемой в D-сорбит, который затем переводится с помощью бактериального синтеза в D-сорбозу, 2-оксо-L-гулоновую к-ту и L-аскорбиновую кислоту. Хорошим стабилизатором аскорбиновой кислоты является сульфит натрия, используемый при приготовлении ампульных растворов. Единственным антагонистом аскорбиновой кислоты является глюкоаскорбиновая кислота.
Все растения и многие животные синтезируют аскорбиновую кислоту, за исключением человека, обезьяны, морской свинки, индийской плодовой летучей мыши (Pteropus medius) и краснозадого бульбуля (Pycnonotus cafer Linn.) — птицы из отряда Passeriformes, вследствие отсутствия у них ферментов D-глюкуроноредуктазы и L-гулоно-гамма-лактон-O2-оксидоредуктазы, возможно, из-за врожденного генетического дефекта.
Поступившая в организм человека аскорбиновая кислота всасывается в тонком кишечнике. Общее количество аскорбиновой кислоты в организме здорового человека 3— 6 г. В плазме крови содержится 0,7—1,2 мг% , в лейкоцитах 20—30 мг% . Ряд оксидаз (аскорбиноксидаза, цитохромоксидаза, Пероксидаза, лак-таза и др.) прямо или косвенно катализирует окисление аскорбиновой кислоты. Синтез аскорбиновой кислоты в животном организме происходит из D-глюкуронолакто-на. Механизм действия аскорбиновой кислоты окончательно еще не расшифрован. Она играет важную роль в гидроксилировании пролина в оксипролин коллагена, участвует в окислении аминокислот ароматического ряда (тирозина и фенилаланина), а также в гидроксилировании триптофана в 5-окситриптофан в присутствии ионов меди. Аскорбиновая кислота участвует в биогенезе кортикостероидов, оказывает защитное действие на пантотеновую и никотиновую кислоты и способствует ферментативному превращению фолиевой кислоты в фолиновую. У видов, не синтезирующих аскорбиновую кислоту (человек, морская свинка), как и у способных к его биосинтезу, аскорбиновая кислота оказывает экономизирующее действие в отношении витаминов B1, B2, A, E, фолиевой кислоты, пантотеновой кислоты, уменьшая расходование, то есть снижает потребность в них. Этот эффект, по-видимому, связан с редуцирующими и антиоксидатными свойствами аскорбиновой кислоты.
Суточная потребность человека в аскорбиновой кислоте — см. Витамины.
Препараты аскорбиновой кислоты применяют для профилактики и лечения C-витаминной недостаточности, а также при повышенной физиологической потребности организма в аскорбиновой кислоте (во время беременности и лактации, при повышенной физической нагрузке, усиленном умственном и эмоциональном напряжении).
В лечебных целях аскорбиновую кислоту используют в комплексной терапии инфекционных заболеваний и разного вида интоксикаций, при заболеваниях печени, нефропатии беременных, при болезни Аддисона, при вяло заживающих ранах и переломах костей, при заболеваниях желудочно-кишечного тракта (ахилия, язвенная болезнь и др.), при атеросклерозе. Аскорбиновую кислоту назначают для профилактики кровотечений при лечении антикоагулянтами.
Назначают аскорбиновую кислоту внутрь (после еды), внутримышечно и внутривенно. Лечебные дозы для взрослых составляют при приеме внутрь 0,05—0,1 г 3— 5 раз в день; парентерально аскорбиновую кислоту вводят в виде 5% раствора от 1 до 5 мл. Детям назначают внутрь по 0,05—0,1 г 2—3 раза в день; парентерально 1—2 мл 5% раствора. Сроки лечения зависят от характера и течения заболевания.
При длительном применении высоких доз аскорбиновой кислоты следует следить за функцией поджелудочной железы, почек, а также за артериальным давлением, так как имеются отдельные наблюдения, свидетельствующие о том, что продолжительный прием значительных количеств аскорбиновой кислоты вызывает угнетение инсулярного аппарата поджелудочной железы, способствует развитию почечного диабета и может повышать артериальное давление.
Необходимо соблюдать осторожность при назначении максимальных доз аскорбиновой кислоты при внутривенном введении в случаях повышенной свертываемости крови, при тромбофлебитах и склонности к тромбозам.
Формы выпуска: порошок, драже по 0,05 г, таблетки по 0,025 г с глюкозой, таблетки по 0,05 г и по 0,1 г; ампулы, содержащие 1 и 5 мл 5% раствора. Кроме того, аскорбиновая кислота входит в состав различных поливитаминных препаратов.
Сохраняют в хорошо укупоренной таре, предохраняющей от действия света и воздуха.
Методы определения аскорбиновой кислоты
Методы определения аскорбиновой кислоты зависят от объекта исследования, концентрации аскорбиновой кислоты в объекте, наличия в объекте веществ, мешающих определению, и пр. Объектами исследования могут быть органы и ткани животных, биологические жидкости (кровь, моча и др.), растительные продукты (овощи, фрукты и пр.), готовая пища, медицинские препараты аскорбиновой кислоты. В перечисленных объектах аскорбиновой кислоты находится как в восстановленной, так и в окисленной форме (дегидроаскорбиновая кислота), которая может образоваться, например, при обработке и хранении пищевых продуктов. Поэтому ее также необходимо определять.
Основные этапы определения аскорбиновой кислоты следующие:
1) получение материала;
2) хранение полученного материала;
3) экстрагирование аскорбиновой кислоты из образца;
4) освобождение полученного экстракта от примесей, мешающих определению аскорбиновой кислоты;
5) определение количества аскорбиновой кислоты.
Аскорбиновая кислота легко разрушается, и поэтому обеспечение ее сохранности весьма существенно для любого метода исследования. Разрушение аскорбиновой кислоты усиливается под влиянием солнечного освещения, аэрации, повышения температуры и увеличения pH среды. Чем меньше содержание аскорбиновой кислоты в анализируемом объекте, тем больше трудностей при ее определении. Некоторые из методов, например, определение аскорбиновой кислоты в крови и моче, имеют ценность для распознавания степени обеспеченности организма человека аскорбиновой кислотой. При взятии материала из исследуемого объекта необходимо создать условия для максимального сохранения аскорбиновой кислоты в полученной пробе.
Например, исследуя кровь, нужно взять ее без гемолиза. При необходимости нужно создать такие условия хранения материала, которые уменьшают или исключают инактивацию аскорбинвой кислоты (холод, добавление консервантов и т. д.). Экстрагирование проводят при pH не менее 4, предварительном связывании ионов металлов, катализирующих окисление аскорбиновой кислоты, и инактивации ферментов, окисляющих аскорбиновую кислоту. Для экстрагирования применяют растворы уксусной, трихлоруксусной, щавелевой и метафосфорной кислот. Наиболее предпочтительна 5—6% метафосфорная кислота, хорошо стабилизирующая
Аскобиновая кислота, осаждающая белки и инактивирующая в сырых растительных объектах фермент аскорбиназу. Освобождение от примесей, мешающих определению, проводят с помощью осаждения последних, а также с использованием различных методов хроматографии (на бумаге тонкослойной, ионообменной).
Для количественного определения содержания аскорбиновой кислоты в биологических материалах предложен ряд методов. Так, определение аскорбиновой кислоты в моче проводят методом Тилльманса, в основе которого лежит способность аскорбиновой кислоты восстанавливать некоторые вещества, в частности 2,6-дихлорфенолиндофенол. Для этого анализируемую пробу титруют 0,001 н. раствором натриевой соли 2,6-дихлорфенолиндофенола до прекращения обесцвечивания окраски раствора. Этот же принцип лежит в основе определения аскорбиновой кислоты в плазме крови (см. Фармера-Абт метод). При количественном определении в лейкоцитах применяют метод Бессея (см. Бессея методы). Метод достаточно точен и требует для анализа крайне незначительного количества биологического материала (0,2 мл цельной крови).
При исследовании продуктов, содержащих так называемые редуктоны, которые вступают в соединение с 2,6-дихлорфенол индофенол ом (сиропы, компоты, сушеные овощи, фрукты и др.), лучше всего применять обработку экстракта формальдегидом [Шиллингер (A. Schillinger), 1966]. При анализе объектов, содержащих естественные пигменты (красители), чаще применяют титрование 2,6-дихлорфенолиндофенолом в присутствии органического растворителя (хлороформа, ксилола, изоамил ацетата и др.), экстрагирующих избыток красителя. При определении аскорбиновой кислоты в окрашенных фруктовых и ягодных соках применяют амперометрическое титрование. Конечную точку титрования аскорбиновой кислоты 2,6-дихлорфенолиндофенолом определяют по изменению потенциала — потенциометрически [Харрис, Марсон (L. J. Harris, L. W. Marson) и др., 1947] либо по появлению поляризационного тока — амперометрически [Харлампович, Возньяк (Z. Charlampowicz, W. Woznjak) и др., 1969]. Этот метод достаточно точен.
Для определения дегидроаскорбиновой кислоты ее восстанавливают в аскорбиновую кислоту с последующим титрованием 2,6-дихлорфенол индофенолом. Для восстановления применяют сероводород [Тилльманс (J. Tillmans) и др., 1932]. Однако сероводород не полностью восстанавливает дегидроаскорбиновую кислоту. Лучшие результаты получают при ее восстановлении сульфгидрильными соединениями (гомоцистеин, цистеин, 2,3-димеркаптопропанол).
Кроме биологического и окислительно-восстановительных методов определения аскорбиновой кислоты, используют методы, которые основаны на цветных реакциях с аскорбиновой кислотой или продуктами ее окисления.
Этими методами проводят определение аскорбиновой кислоты, дегидроаскорбиновой и дикетогулоновой кислот. Наиболее распространен метод, предложенный в 1948 году Роу (J. Н. Roe) и другими, с применением 2,4-динитрофенил гидразина. Дикетогулоновая кислота, получаемая в ходе анализа при окислении дегидроаскорбиновой кислоты, образует озазоны, имеющие оранжевую окраску. Озазоны растворяют в кислотах (серной, уксусной и смесях соляной и фосфорной кислот) и с помощью фотоколориметрирования измеряют оптическую плотность растворов. Наилучшие условия: температура раствора 37°, время проведения реакции — 6 часов.
Определение аскорбиновой кислоты проводится также с использованием меченых изотопов, флюориметрическим методом и др.
Аскорбиновая кислота в синтетических препаратах определяется титрованием 0,1 н. раствора йодата калия, 1 мл которого эквивалентен 0,0088 г аскорбиновой кислоты.
Библиография: Витамины в питании и профилактика витаминной недостаточности, под ред. В. В. Ефремова, М., 1969; Гигиена питания, под ред. К. С. Петровского, т. 1, с. 89, М., 1971; Покровский А. А. К вопросу о потребностях различных групп населения в энергии и основных пищевых веществах, Вестн. АМН СССР, № 10, с. 3, 1966, библиогр.; Modern nutrition in health and disease, ed. by M.G. Wohl a.R.S. Goodhart, p. 346, Philadelphia, 1968; The vitamins, ed. by W. H. Sebrell a. R. S. Harris, v. 1, N. Y.— L., 1967; Wagner A. F. a. Fоlkers K. A. Vitamins and coenzymes, N. Y., 1964.
Методы определения А. κ.— Биохимические методы исследования в клинике, под ред. А. А. Покровского, с. 469, М., 1969; Методическое руководство по определению витаминов A, D, E, B1, B2, B6, PP, C, P и каротина в витаминных препаратах и пищевых продуктах, под ред. Б. А. Лаврова, с. 99, М., 1960; Степанова E. Н. и Григорьева М. П. Методы определения аскорбиновой кислоты в пищевых продуктах, Вопр. пит., т. 30, № 1, с. 56, 1971; Harris L. J. a. Mapson L. W. Determination of ascorbic acid in presence of interfering substances by «continuousflow» method, Brit. J. Nutr., v. 1, p. 7, 1947; Rоe J. H. a. o. The determination of diketo-l-gulonic acid, dehydro-l-ascorbic acid, and l-ascorbic acid in the same tissue extract by the 2,4-dinitrophenylhydrazine method, J. biol. Chem., v. 174, p. 201,1948; T i 1 1-mansJ., Hirsch P. a. SiebertF. Das Reduktionsvermögen pflanzlicher Lebensmittel und seine Beziehung zum Vitamin C. Z. Lebensmitt.-Untersuch., Bd 63, S. 21, 1932.
В. В. Ефремов; В. M. Авакумов (фарм.).
Источник