Меню

Фмн кофермент какого витамина

КОФЕРМЕНТНАЯ ФУНКЦИЯ ВИТАМИНОВ

Витамины играют важную роль в обмене веществ. В настоящее время известны не только те реакции, для нормального течения которых необходим тот или иной витамин, но и ферменты, в со­став коферментов которых входят витамины (табл. 14). Описано более 100 таких ферментов.

Недостаточное поступление витаминов с пищей, нарушение их всасывания и усвоения, повышенная потребность организма в них могут приводить к специфическим для каждого витамина наруше­ниям обмена веществ и физиологических функций, снижению ра­ботоспособности. Длительный дефицит поступления витаминов вызывает специфические заболевания (гиповитаминозы и авитаминозы).

Таблица Важнейшие коферменты, в состав которых входят витамины

Реакции, катализируемые ферментами

РР (никотиновая кислота)

Перенос атомов водорода в процессе тканевого дыхания и биосинтеза с одного субстрата на другой

Перенос атомов водорода с суб­страта на кислород

Перенос ацетильных или ацильных радикалов (остаток уксусной и жирных кислот)

Перенос одноуглеродистых соединений в процессе биосинтеза (нуклеиновых кислот и др.)­

Окислительное декарбоксилирование кетокислот (пировиноградной, α-кетоглютаровой). Окисление глюкозы в пентозном цикле.

Переаминирование и декарбоксилирование аминокислот и ряд других реакций белкового и аминокислот­ного обмена

Коэнэим В12 (кобамидный

Перенос и образование лабильных метильных групп и другие реакции биосинтеза

ПРИЧИНЫ ВОЗНИКНОВЕНИЯ ДЕФИЦИТА ВИТАМИНОВ В ОРГАНИЗМЕ

Витамины — незаменимые факторы питания. Их запасы в ор­ганизме крайне невелики (за исключением ретинола), поэтому они в необходимых количествах должны поступать с пищей. От содержания витаминов в рационе зависит общая направленность обмена веществ и состояние здоровья (табл. 3).

Одной из часто встречающихся причин повышения потребности организма в витаминах является изменение нормального соотно­шения в пищевом рационе основных усвояемых веществ. Увеличе­ние доли углеводов повышает потребность в витамине В1, белка — в витамине В6, растительных масел — в витамине Е и липотропных факторах. Снижение потребления белка (ниже установленных фи­зиологических норм) увеличивает потребность в большинстве ви­таминов, так как затрудняется их утилизация, построение фермен­тов, в которые они входят.

Усиленные физическая и нервная нагрузки приводят к значи­тельным изменениям обменных процессов, что сопряжено с повы­шенным расходом витаминов.Потребность в витаминах возрастает во время пребывания в высокогорье, при воздействии на организм пониженной и повышен­ной температур воздуха в крайних климатических зонах. Особенно это относится к людям, не акклиматизировавшимся к данному кли­мату.

Витамины поступают в организм с различными продуктами питания; для предупреждения дефицита витаминов и специфиче­ских нарушений обмена они должны поступать систематически и в определенных количествах (табл.3).

Потребность организма взрослого человека в витаминах и их основные источники в питании

Основные источники витаминов в питании

0,6мг на 4000 кДж

Зерновые продукты, не освобожден­ные от периферических частей и обо­лочек. Другие растительные и живот­ные продукты

0,7 мг на 1000 кДж

Молоко, молочные продукты, яица, мясо, овощи

Никотиновая кислота (РР)

6,6 мг на 1000 кДж

Печень, яйца, хлеб ржаной, говядина, сыр, молоко, картофель

Мясо, рыба, картофель, капуста, крупы, хлеб пшеничный

фолиевая кислота (Вс)

Печень, зелень (петрушка, шпинат, салат, лук зеленый), говядина, яйца

Мясные и рыбные продукты, яйца, творог

Аскорбиновая кислота (С)

Картофель, капуста, другие овощи, фрукты, ягоды

1 мг ретиноловых

Печень, молоко, рыба, сливочное масло, яйца, сыр

Витамин D (кальцифе- ролы)­

Рыба, рыбные продукты, молоко, масло сливочное

Витамин Е токоферолы

Растительные масла, маргарин, крупы, яйца, печень

В настоящее время количественно определена потребность в 10 витаминах, которая зависит от многих причин. Наиболее существенной причиной считают физическую напряженность труда. Потребность в витаминах К, Р, липоевой и пантотеновой кислотах, биотине, а также в витаминоподобных веществах (оротовой кислоте, витамине В15, холине, парааминобензойной кислоте, инозите и карнитине) определена ориентировочно. Более точно разработаны рекомендации по их использованию с целью направленного воздействия на обмен веществ, что отражено в специальных инструкциях, регламентирующих сроки и дозы применения, в том числе и в спортивной практике.

4. Витаминоподобные вещества

В эту группу входят различные химические соединения, которые частично синтезируются в организме и обладают витаминным действием. Однако некоторые из них могут выполнять и специфические функции или самостоятельно или входя в состав других веществ.

Витамин В4 (холин)- Его недостаток вызывает специфичные расстройства липидного обмена. Содержится в значительных количествах в мясе, различных злаках. Поступая через биологические мембраны в клетки, он принимает участие в биосинтезе ацетилхолина и фосфотидов и поставляет подвижные метильные группы -СН3 при различных реакциях трансаминирования.

Читайте также:  Какие витамины отвечают за цвет волос

Витамин В8 (инозит) — Недостаток вызывает задержку роста у молодняка, облысение и специфические расстройства нервной системы. У человека, заболевания связанные с витамином В8 не установлены.

Оротовая кислота — витамин В13. К витаминам эта кислота относится условно, так как авитаминоз описан только у грызунов и кур. Она является предшественником урацила и цитозина, т. е. может использоваться при биосинтезе пиримидиновых нуклеотидов. С целью стимулирования биосинтеза нуклеиновых кислот и как лечебное средство при нарушениях белкового обмена оротовая кислота применяется в лечебной практике.

Пангамовая кислота — витамин В15. Эта кислота относится к витаминам также условно (неизвестна потребность в ней организма человека и животных). Однако она обнаружена в продуктах питания и обладает рядом ценных свойств, благодаря чему препарат витамина В15 применяются в медицине и спортивной практике. Витамин представляет собой эфир глюконовой кислоты и димецилглицина. Благодаря наличию метильных групп, соединенных с азотом («лабильных» метильных групп), он оказывает положительное влияние на липидный обмен. Витамин В15 стимулирует тканевое дыхание, повышает эффективность использование кислорода тканями, особенно при его недостатке различного происхождения, стимулирует продукцию стероидных гормонов коры надпочечников. Как лечебное средство используется при угрозе жирового перерождения печени, атеросклерозе, состояниях, сопровождающихся кислородным голоданием.

Витамин N (липоевая кислота) – содержится в растительных и животных тканях. Выполняет роль кофермента окислительного декарбоксилирования ПВК и альфа-кетоглутаровой кислоты, как сильный восстановитель снижает потребность в витаминах Е и С, предотвращая их быстрое окисление.

Витамин U (метилметионинсульфоний, противоязвенный фактор) – содержится в овощах, особенно много в капусте, разрушается при варке. Является донором метильных групп, вследствие чего выполняет роль липотропного фактора, используемого при лечении и профилактике жирового перерождения печени. Обладает антигистаминными свойствами, противоязвенной активностью. Применяется при лечении язвенной болезни желудка и 12-перстной кишки, гастритов.

Источник

77.Коферменты и их связь с витаминами

Коферменты, или коэнзимы — малые молекулы небелковой природы, специфически соединяющиеся с соответствующими белками, называемыми апоферментами, и играющие рольактивного центра или простетической группы молекулы фермента.

Комплекс кофермента и апофермента образует целостную, биологически активную молекулу фермента.

Роль коферментов нередко играют витамины или их метаболиты (чаще всего — фосфорилированные формы витаминов группы B). Например, коферментом фермента карбоксилазы являетсятиаминпирофосфат, коферментом многих аминотрансфераз — пиридоксаль-6-фосфат.

В роли кофактора могут выступать витамины. Например, кофактором АлАТ и АсАТ является витамин В6. витамин В1 –входит в состав мультиферментного комплекса, таким образом участвует в реакции окислительного декарбоксилирования ПВК и альфакетоглутарата. Витамин РР входит в состав НАД – никотинамидалениндинуклеотида, а витамин В2 в состав ФМН – флавин6мононуклеотида.

78. Регуляция действия ферментов: 1) частичный протеолиз – пепсиноген в пепсин под действием HCl, трипсиноген в трипсин под действием энтерокиназы, химотрипсиноген в химотрипсин под действием трипсина 2) ковалентная модификация – фосфорилирование (присоединение остатка фосфорной кислоты) и дефосфорилирование – пример – 2 фосфорилаза Б не активная + 4 АТФ  1 фосфорилаза А – Рн + 4 АДФ. И может быть все наоборот. Гликогенсинтетаза активная + АТФ  гликогенсинтетаза – Рн не активная + АДФ. Адреналин повышает уровень глюкозы в крови и активируется фосфорилаза и расщепляется гликоген.

79.Активаторы ферментов: ионы Ме с 19 по 30 в системе Менделеева, восстановленные формы соединений НАДН2 ФАДН2, аллостерические активаторы, гормоны – адреналин, инсулин.

Ингибирование ферментов: 1) обратимое: а) конкурентное – когда ингибитор похож на субстрат (аллопуринол) б) не конкурентное – аллостерическое (ретроингибирование) и уменьшение доли субстрата

2) необратимое: а) специфическая – СО на цитохромы б) не специфическая – денатурация при t 0 С.

80. Классификация ферментов 1961 год – 5 международный конгресс в Москве: 1) оксидоредуктазы (имеют 5 подклассов) в основе ОВР; 2) трансферазы –перенос амино и метильной групп; 3) гидролазы – все ферменты пищеварительного тракта; расщепление с участием воды; 4) лиазы – расщепление связей без участия воды; 5) изомеразы – превращение глюкозо6фосфат в фруктозо6фосфат — реакции изомеризации; 6) лигазы (синтетазы) – синтез органических веществ с затратой энергии распада АТФ.

КФ 1: Оксидоредуктазы, катализирующие окисление или восстановление. Пример: каталаза, алкогольдегидрогеназа

КФ 2: Трансферазы, катализирующие перенос химических групп с одной молекулы субстрата на другую. Среди трансфераз особо выделяют киназы, переносящие фосфатную группу, как правило, с молекулы АТФ.

КФ 3: Гидролазы, катализирующие гидролиз химических связей. Пример: эстеразы, пепсин, трипсин, амилаза, липопротеинлипаза

Читайте также:  Болезнь пеллагра возникает при недостатке витамина

КФ 4: Лиазы, катализирующие разрыв химических связей без гидролиза с образованием двойной связи в одном из продуктов.

КФ 5: Изомеразы, катализирующие структурные или геометрические изменения в молекуле субстрата.

КФ 6: Лигазы, катализирующие образование химических связей между субстратами за счет гидролиза АТФ. Пример: ДНК-полимераза

81. Энергетический обмен, катаболизм, источники восстановленных эквивалентов. Совокупность окислительных реакций, происходящих в живых организмах и обеспечивающих их энергией и метаболитами, необходимыми для осуществления процессов жизнедеятельности, называется биологическим окислением. Функции биологического окисления: 1) энергетический обмен, поддержание t тела, мышечная активность, осмотическая работа, транспорт, биосинтез 2) окисление ксенобиотиков 3) окисление токсических продуктов обмена 4) синтез ключевых метаболитов. Основными источниками энергии для организма являются белки, липиды и углеводы, поступающие с пищей. Три стадии катаболизма: 1) специфическое превращение в мономеры – аминокислоты, моносахариды, глицерин, жирные кислоты. 2) образование унифицированных продуктов – ПВК и АцКоА (моносахариды через ПВК). 3) АцКоА в ЦТК образуется СО2, вода; 3НАДН, которые в дых цепи дают воду и 3 АТФ; ФАД Н2, который в дых цепи дает воду и 2 АТФ. Источники восстановленных эквивалентов это ЦТК, все окислительно-восстановительные реакции, бета-окисление жирных кислот. В дых цепь поступает 3НАДН и ФАДН2, они образуются в следующих реакциях: НАДФН+НАДНАДФ+НАДН (трансдегидрогеназа).

82.Митохондриальная цепь окисления водорода. трансмембранный электрохимический потенциал. Перенос 2х протонов из матрикса в межмембранное пространство сопряжен с образованием градиента концентраций протонов водорода (дельта МюН). Именно в этом месте возникает пункт сопряжения, окисления и фосфорилирования. Трансмембранный электрохимический потенциал – это разница протонов между матриксом и наружной частью. Образуется АТФ (АДФ+Фн) путем фосфорилирования с использованием энергии окисления водорода.

83. НАД-зависимые дегидрогеназы – это сложные ферменты, относящиеся к классу оксидоредуктаз и состоящие из белковой и небелковой части. Небелковая часть представлена коферментами НАД или НАДФ. НАД – никотинамидадениндинуклеотид, в его структуре два мононуклеотида, соединенные фосфоэфирной связью. В состав одного мононуклеотида входит амид никотиновой кислоты (витамин ниацин), рибоза и остаток фосфорной кислоты. Второй мононуклеотид представлен аденином, Д-рибозой и также остатком фосфорной кислоты. НАД-зависимые дегидрогеназы акцептируют от субстрата два атома водорода, первый присоединяется к НАД с образованием НАДН, второй выделяется в виде протона. Изоцитрат под действием изоцитратдегидрогеназы образуется альфа-кетоглуторат СО2 НАДН+Н + . Источники НАДН: изоцитратдегидрогеназа, малатдегидрогеназа, мультиферментный комплекс окислительного декарбоксилирования альфа-кетоглутората, бета-окисление жирных кислот.

84. Флавиновые ферменты – это сложные ферменты, состоящие из белковой и небелковой части, небелковой частью представлена простерическая группа ФМН – флавинмононуклеотид или ФАД – флавинадениндинуклеотид. ФМН состоит из витамина В2, пятиатомного спирта ретибола, остатка фосфорной кислоты; в структуре ФАД два мононуклеотида, соединенных фосфоэфирной связью. В состав одного мононуклеотида входит витамин В2, пятиатомный спирт ретибол, остаток фосфорной кислоты. Второй мононуклеотид представлен АМФ – Аденин, рибоза, остаток фосфорной кислоты.

85. Дыхательная цепь, железо-серопротеины, цитохромы. Железо-серопротеины относят к негемовым железопротеинам. Известно три вида FeS-белков: 1) один атом железа тетраэдрически связан с сульфгидрильными группами четырех остатков цистеина; 2) (Fe2S2) содержит 2 атома железа и 2 неорганических сульфида, присоединенных к четырем остаткам цистеина; 3) (Fе4S4) содержит четыре атома железа, четыре сульфгидридные группы и четыре остатка цистеина. Атом железа в этих комплексах может находиться в восстановленном (Fe ++ ) и окисленном (Fe +++ ) состояниях. НАДН-дегидрогеназа содержит второй и третий типы железо-серопротеинов. Цитохромы – это ферментные гемопротеины, транспортирующие только электроны. В качестве простетической группы они содержат гем. В дых цепи располагаются 5 цитохромов, отличающихся по строению простетических групп и имеющих разные спектры поглощения. В цитохроме b гем нековалентно связан с белковой частью, в то время как в цитохромах с и с1 – связь с белковой частью ковалентная. Цитохромы а и а3 имеют иную простетическую группу, называемую гемом-а. Она отличается от простетической группы цитохромов с и с1 наличием формильной группы вместо одной из метильных групп и углеводородной цепью вместо одного из остатков винила. В составе цитохромов а и а3 находятся два атома меди. Простетической группой цитохромов в, с1 и с служит протопорферин 1Х. Цитохром с имеет ковалентно связанный гем и выполняет челночные функции – передает электроны цитохрома с1 к цитохромоксидазе.

86. образование макроэргических связей в дыхательной цепи. Коэффициент Р/О. Разобщение дыхания и фосфорилирования в дыхательной цепи. Коэффициент Р/О – это количество АТФ, которое образовалось в дых цепи. Р/О может быть равно 3 или 2 АТФ. Три АТФ образуется при участии НАДН, две АТФ при участии ФАДН2. В окислительном фосфорилировании не образуется дельта МюН, т.к. есть вещества, которые принимают протоны на себя. В окислительном фосфорилировании не происходит образования АТФ и энергия выделяется в виде тепла.

Читайте также:  Витамины содержащие много меди

87. Окислительное субстратное фосфорилирование в процессе биологического окисления. Образование АТФ в процессе метаболизма идет двумя путями – окислительного и субстратного фосфорилирования. Основными источниками поставляющими энергию являются: 1) дых цепь 2) ЦТК 3) гликолиз. Возникновение макроэргической связи в момент окисления субстрата с дальнейшей активацией неорганического фосфата и его переносом на АДФ с образованием АТФ называют субстратным фосфорилированием. В данном случае окисление субстрата связано с фосфорилированием АДФ. Примерами реакций субстратного фосфорилирования являются две реакции гликолиза – окисление 3-фосфоглицеринового альдегида в 1,3-дифосфоглицериновую кислоту, и окисление 2-фосфоглицериновой кислоты в 2-фосфоэнолпировиноградную кислоту; а также одна реакция ЦТК — окисление сукцинил-КоА в янтарную кислоту.Основная масса АТФ образуется путем окислительного фосфорилирования. В процессе окислительного фосфорилирования окисляемый субстрат участия не принимает, а активирование неорганического фосфата сопряжено с переносом электронов и протонов водорода с коферментов дегидрогеназ (принимающих участие в окислении субстрата) к молекулярному кислороду. Сопряжение окисления с фосфорилированием АДФ и последующим образованием АТФ называют окислительным фосфорилированием. Процессы сопряжения окисления и фосфорилирования идут в дых цепи.

88. Образование СО2 в процессе биологического окисления. СО2 в организме образуется двумя путями – путем прямого и окислительного декарбоксилирования. Основная масса СО2 образуется в ЦТК. Первая молекула СО2 образуется путем прямого декарбоксилирования изоцитрата, при этом изоцитратдегидрогеназа обладает декарбоксилирующим эффектом. Вторая молекула СО2 путем окислительного декарбоксилирования альфа-кетоглутората. Одна молекула СО2 образуется в результате окислительного декарбоксилирования ПВК. Человек за сутки выделяет около 500 мл СО2.

89. Виды декарбоксилирования в ЦТК. В ЦТК есть только два типа декарбоксилирования – прямое и окислительное. 1) Прямое декарбоксилирование изоцитрата под действием изоцитратдегидрогеназы, которая обладает декарбоксилирующим эффектом, превращается в альфа-кетоглуторат и НАДН, который является источником водорода для дыхательной цепи, окисление которого приводит к образованию 3х АТФ и воды. Кроме того в этой реакции образуется СО2. 2) Окислительное декарбоксилирование альфа-кетоглутората происходит под действием альфа-кетоглуторатдегидрогеназного комплекса, который включает три фермента и пять кофакторов – ТДФНSКоА, НАД, ФАД, липоевая кислота. Продуктом реакции является образование макроэргического соединения – сукцинил-КоА. В результате этой реакции образуется еще одна молекула восстановительного эквивалента НАДН и СО2.

90. Микросомальное окисление также как митохондриальное, происходит в митохондриях. Но в микросомальном окислении кислород используется с пластической целью, он включается в субстрат. Примерами микросомального окисления являются – окисления ксенобиотиков, синтез стероидных гормонов, активных форм витаминов, жирных кислот, холестерина. Источником водорода в микросомальном окислении служит НАДФН. При микросомальном окислении энергии не образуется.

91. Пути использования, токсичность кислорода, механизмы защиты. 1) митохондриальные окисления – образование воды – оксидазный способ. 2) в микросомальным окислением с пластической целью – оксигеназный способ. 3) для образования Н2О2 – пероксидазный способ. Токсичность кислорода связано с тем, что в ходе окислительных реакций кислород может принимать дополнительный электрон и превращаться в супероксидный радикал (анион). Присоединение двух дополнительных электронов к супероксидному аниону (О2 — ) ведет к образованию пероксидных анионов (О2 -2 ). О2 — +е+2Н + Н2О2; О2 — е+О2. В результате реакции дисмутации, катализируемой супероксиддисмутазой (СОД), образуется перикись водорода: О2 — +О2 — +2Н + Н2О22. Такие формы кислорода имеют высокую химическую активность, реагируют со многими веществами в организме, в том числе с нуклеиновыми кислотами, белками, липидами, оказывая повреждающее действие. Активные формы кислорода запускают цепные реакции перекисного окисления липидов. В процессе ПОЛ образуются органические перекиси. ПОЛ приводит к повреждающему воздействию мембран клеток. Активные формы кислорода образуются в организме и в реакциях неферментативного окисления ряда веществ. В связи с тем, что образование активных форм кислорода ведет к повреждающему эффекту, можно говорить о токсичности кислорода и механизмах защиты. Имеется два способа защиты: 1) ферментативные пути – активируют пероксидаза и каталаза. Пероксиды выступают в роли акцепторов водорода, донорами которых являются органические субстраты. 2Н2О22Н2О+О2 (катализирует каталаза). 2) неферментативные пути – используются препараты-ловушки активных форм О2 – витамин Е, К, различные хиноны.

Источник

Adblock
detector