Что относится к природным полимерам
Полимеры – это химические «бусинки». Это соединения, которые состоят из мономерных звеньев, соединенных в длинные макромолекулы. То есть они имеют длинную цепочку с повторяющимся фрагментом.
Чаще всего полимеры – это искусственно созданные соединения, но прежде, чем человек научился их делать, он узнал о природных полимерах – соединениях созданных матушкой природой.
Еще до появления пластмасс и резины природа создала и использовала свои полимеры для того, чтобы жизнь на планете стала возможной. Мы чаще всего к природному полимеру относимся равнодушно, не уделяя им должного внимания и не рекламируя, как созданных человеком синтетических собратьев. А зря природные полимеры во многом могут оказаться даже важнее для жизни человека, чем искусственные.
Что относится к природным полимерам
К природным полимерам относятся жизненно важные ДНК и РНК. Эти соединения важны для генов и продолжения жизни человека. Среди природных полимеров можно также назвать крахмал, целлюлозу, полисахариды, натуральный каучук и другие.
Полисахариды
Большая группа природных полимеров, являющихся «полимерами сахара».
К данной группе относятся ДНК и РНК соединения, состоящие из звеньев глюкозы, а к другой части относят крахмал и целлюлозу.
Крахмал – это полимер, полисахарид, с высокой молекулярной массой, в его состав может входить до 10000 звеньев глюкозы, связанных между собой. Крахмал содержится в кукурузе, картофеле.
Другим членом семейства полисахаридов является целлюлоза. Она – это главное составляющие растений right 0. Крахмал и целлюлоза отличаются друг от друга по свойствам.
Крахмал растворим в воде и его можно употреблять в пищу. Целлюлоза, это более кристаллическое соединение, нерастворимое в воде. Ее используют при изготовлении бумаги, волокон для тканей. Хлопок – типичный представитель изделия из целлюлозы. Приятный и удобный в носке материал.
Еще одним представителем семейства полисахаридов, является хитин. Из него матушкой природой изготовлены панцири раков, креветок, крабов и других. Его свойства активно изучаются, но обширной области применения, как, например, целлюлоза, он не нашел.
Природа дает нам примеры полимеров, на их основе мы учимся получать новые модификации, повторяем созданное ей. Мы научились получать искусственный шелк, но вот повторить молекулы ДНК и РНК пока не можем. Мы не можем до конца изучить свойства хитина и найти область использовании. Полимеры – это отдельная уникальная наука и главный учитель в которой – природа. Она дает нам не только знания, но и сырье для новых веществ.
Протеины и полипептиды
Протеины или белки – это первые примеры полиамидов. Также подобного рода полимеры называют «найлон» — это подобное природным, созданное искусственно соединения.
Природные и синтетические полимеры данного класса имеют общую черту — содержат амидные связи в основной цепи.
А различия связаны, конечно, с получением. Синтетические полимеры создаются из соединений содержащих большое количество СН2 групп. Поэтому конечная молекула полимера имеет по пять-шесть атомов углерода между амидными группами. В то время, как природа более экономична и в созданных ее молекулах всего по одному углероду, между амидными группами.
Энзимы
Энзимы — наиважнейшие представителя группы полипептидов. Они являются ключевым звеном для возникновения жизни на Земле. Энзимы — это своего рода катализаторы, благодаря которым все живые организмы могут строить, разрушать, создавать. На практике установлено, что определенный энзим может создавать определенный полимер. Как и почему происходит именно так пока точно не определено. Ответ известен только природе.
Шелк — еще один представитель полипептидов, который уже очень давно и очень широко используется человеком. Шелк производят гусеницы, которые плетут из него кокон. Из «украденного» кокона прядут волокно. Структура молекулы шелка содержит не замещенные аминогруппы и глицерин. Глицериновые звенья способны образовывать плоские протяженные цепочки, которые плотно упаковываются друг с другом. Это придает шелку прочность и блеск. Шелк — прекрасный материал, он очень красивый и прохладный на ощупь. Из него можно создавать шикарные наряды.
Глядя на природу человек начинает производить полимеры, он учится от нее, пытаясь понять правила и законы. Но в отличии от природы, которая щедра на подарки, люди жадны. Они хотят производить много и быстро. И поэтому зачастую, вместо маленьких изящных молекул природного полимера, мы получаем огромную глыбу, с кучей лишних хвостов, отдаленно напоминающую природный полимер. Зачем мы так поступаем? Во-первых, желание много и сразу.
Во-вторых, человечество еще до конца не понимает многие природные технологические решения и не все природные полимеры, мы можем получать.
Зачем тогда пытаться создавать самим? Можно взять у природы — постоянно возобновляемый ресурс.
У природы материалы, конечно, возобновляемы, но аппетит человеческого прогресса растет постоянно, мы и так вырубаем леса быстрее, чем они растут. А также необходимо понять механизмы создания полимеров природой — найти ответы на многие, в том числе и медицинские вопросы, которые позволят лечить сложные болезни, а в некоторых случаях даже предугадывать недуги и избегать.
Загадка, о природном полимере, которая пока неизвестна. Паук плетет паутину. Вначале паутина — это раствор полипептида в воде. Как только паутина образовалась она высыхает и перестает быть растворимой в воде. Как же изначально полипептид растворялся? Если бы найти ответ на этот вопрос, то можно было бы делать нейлоны таким же способом, используя вторресурсы.
Вот пример подсказки природы, которую пока не может понять человечество. Наблюдайте за природой и берегите ее. Она наша кормилица, спасительница и учитель. В ней столько всего неразгаданного и нового, что нам еще дано познать.
Источник
Что такое Полимер
Полимер (от греч. «πολυ» — много и «μερές» — часть) — это вещество, которое состоит из большого числа молекул. Эти молекулы связаны между собой в звенья и повторяются.
Немецкий химик Герман Штаудингер совместно с группой учёных на опытах доказал, что полимеры состоят из повторяющихся звеньев молекул, которые соединены между собой ковалентными связями. Это такая химическая связь, при которой два атома имеют общую электронную пару. То есть один электрон находится в одном атоме, другой — в другом и при этом они соединены. Учёные назвали такие молекулы «макромолекулами».
Химик также доказал, что пластмасса — это полимер (о пластмассе читайте ниже). За что получил Нобелевскую премию по химии в 1953 году.
Типы полимеров
По химическому составу различают:
- органические;
- элементоорганические;
- неорганические.
Органические полимеры:
- природные;
- искусственные (модифицированные);
- синтетические.
Природные полимеры
Такие полимеры можно найти в природе. Человек не участвует в производстве таких полимеров. В качестве примера можно привести белки, крахмал, натуральный каучук, хлопок, шерсть и др.
Искусственные полимеры
Чтобы получить такие полимеры, человек проводит химические опыты. Например, чтобы получить модифицированный полимер, который затем будет применён при производстве красок, химики добавляют в раствор стирола в толуоле или ксилоле льняное или касторовое масло и нагревают его.
Пример такого полимера — целлюлоза.
Синтетические полимеры
Произвести такие полимеры можно с помощью химического синтеза (т. е. химическим путём). В синтезе участвуют высокомолекулярные органические продукты. Например, чтобы получить синтетический полимер лавсан нужно поликонденсировать (т. е. провести химический опыт) терефталевую кислоту и этиленгликоль.
Пример — капрон, нейлон, полиэтилен, полипропилен, полистирол, фенолформальдегидные смолы.
Элементоорганические полимеры
Содержат атомы других химических элементов, например кремния, алюминия, титана и др. Выделяют:
- термостойкие полимеры;
- полимеры с высокой электропроводностью и полупроводниковыми свойствами;
- вещества с высокой твёрдостью и эластичностью;
- биологические активные полимеры и др.
Химики получают такие полимеры при взаимодействии определённых органических веществ с солями или заменяя некоторые атомы углерода в молекулах на другие составляющие. Пример — полисилоксаны, полититаноксаны и др.
Неорганические полимеры
Полимеры, молекулы которых построены из неорганических боковых цепей (или неорганических радикалов). Неорганические полимеры можно обнаружить в составе земной коры.
Полимеры могут отличаться составом мономерных звеньев. Мономерное звено — это составная часть макромолекулы полимера. Различают:
- гомополимеры;
- гетерополимеры (или сополимеры).
Гомополимеры
Это такие полимеры, у которых одинаковые мономерные звенья. Например: полихлорвинил, поливинилацетат и полистирол.
Гетерополимеры
Это полимеры, которые имеют различные мономерные звенья. Например: сополимер хлористого винила с винилацетатом, сополимер стирола с бутадиеном.
Полимеры могут также подразделяются также на карбоцепные (или гомоцепные) и гетероцепные полимеры.
Карбоцепные полимеры
Главные цепи макромолекул таких полимеров включают только атомы углерода. Например: каучук.
Гетероцепные полимеры
Главные цепи макромолекул таких полимеров включают не только атомы углерода, но ещё и атомы кислорода, азота и серы. Например: простые эфиры (например, полиэтиленгликоль), сложные эфиры (глифталевые смолы, полипептиды (белки) и др.).
Полимеры также могут подразделяться в зависимости от расположения мономерных цепей в пространстве. Различают:
- стереорегулярные (полимеры с линейной структурой);
- нестереорегулярные (или атактические).
Строение макромолекул полимеров может быть различным. Таким образом, есть полимеры:
- линейные;
- разветвлённые;
- лестничные;
- трёхмерные сшитые (сетчатые, пространственные).
Полимеры можно получить разными способами:
- если полимер получают с помощью поликонденсации, то такой полимер называют поликонденсационным (или реактопластами);
- если с помощью полимеризации — речь идёт о полимеризационном полимере.
В зависимости от реакции полимера на нагревание выделяют:
- термопластичные (полиэтилен, поливинилхлорид, полистирол);
- термореактивные полимеры (полиэфиры, эпоксидные, меламиновые и фенольные смолы).
Свойства полимеров
- предотвращают передачу тепла (являются теплоизоляторами);
- обладают большой эластичностью;
- обладают высокой стойкостью в агрессивной химической среде;
- являются диэлектриками (субстанциями, которые плохо проводят электрический ток, т. е. не пропускают его через себя).
Где используются полимеры?
Благодаря своим свойствам, полимеры используются сейчас во многих отраслях. Их используют для производства множества материалов.
Например, в строительстве — как материал для электротехнических конструкций, кабелей, проводов, труб, изоляционных эмалей и лаков. Полимеры химическим путём добавляют в состав бетона и железобетона, чтобы улучшить их качества. Полимеры используют при производстве плёнок и защитных покрытий, сеток и ограждений.
Полимеры также используют в автомобилестроении. Из них делают детали для машин: резину, решётки радиаторов, колпаки для колёс, чехлы для сидений, вентиляционные решётки, коврики; их добавляют в лаки и краски. Они используются также при производстве клея.
В нефтегазовой промышленности также используются полимеры: при производстве оборудования, например насосов, камер и т. д.
В медицине полимеры применяют для изготовления капсул для лекарств. Полимер поликарбонат используют даже при разработке искусственного сердца. А гиалуроновая кислота, которая также является полимером, используется в процессе наращивания тканей.
Молекулы и атомы
Любое вещество состоит из очень маленьких частиц, которые можно увидеть только через микроскоп. Эти частицы называются атомами. Когда атомы объединяются, получаются молекулы.
Количество молекул бесконечно, потому что различные атомы могут объединяться. Но если убрать одни атомы и заменить их другими, это будет уже другая молекула, а соответственно, другое вещество.
Пластмасса
Пластмасса — это полимер, который не существует в природе. Его производит человек.
Это сокращение слов «пластическая» и «масса». Такое название было дано, потому что, когда пластмассу производят, она может принимать любую форму и потом держать эту форму. Чтобы изготовить пластмассу, нужны кристаллические и аморфные полимеры и органические соединения, которые можно найти в нефти.
В пластмассу в процессе производства могут добавляться красители для изменения её цвета.
Источник
Биополимеры — это. Растительные полимеры
Огромное количество разнообразных соединений различной химической природы сумел синтезировать человек в лабораторных условиях. Однако все равно самыми важными и значимыми для жизни всех живых систем были, есть и останутся именно естественные, природные вещества. То есть те молекулы, которые участвуют в тысячах биохимических реакций внутри организмов и отвечают за их нормальное функционирование.
Подавляющее большинство из них относится к группе, имеющей название «биологические полимеры».
Общее понятие о биополимерах
В первую очередь следует сказать, что все эти соединения — высокомолекулярные, обладающие массой, доходящей до миллионов Дальтон. Данные вещества — животные и растительные полимеры, которые играют определяющую роль в построении клеток и их структур, обеспечении метаболизма, фотосинтеза, дыхания, питания и всех остальных жизненно важных функций любого живого организма.
Переоценить значение таких соединений сложно. Биополимеры — это природные вещества естественного происхождения, формирующиеся в живых организмах и являющиеся основой всего живого на нашей планете. Какие же конкретно соединения к ним относятся?
Биополимеры клетки
Их достаточно много. Так, основными биополимерами являются следующие:
- белки;
- полисахариды;
- нуклеиновые кислоты (ДНК и РНК).
Помимо них, сюда же можно отнести и многие смешанные полимеры, формирующиеся из комбинаций уже перечисленных. Например, липопротеины, липополисахариды, гликопротеины и другие.
Общие свойства
Можно выделить несколько особенностей, которые присущи всем рассматриваемым молекулам. Например, следующие общие свойства биополимеров:
- большая молекулярная масса вследствие образования огромных макроцепей с разветвлениями в химической структуре;
- типы связей в макромолекулах (водородные, ионные взаимодействия, электростатическое притяжение, дисульфидные мостики, пептидные связи и прочие);
- структурная единица каждой цепи — мономерное звено;
- стереорегулярность или ее отсутствие в строении цепи.
Но в целом у всех биополимеров все же больше отличий в строении и функциях, нежели сходств.
Белки
Огромное значение в жизни любых живых существ имеют белковые молекулы. Такие биополимеры — это основа всей биомассы. Ведь даже по теории Опарина-Холдейна жизнь на Земле зародилась из коацерватной капельки, которая представляла собой белок.
Структура данных веществ подчиняется строгой упорядоченности в строении. Основу каждого белка составляют аминокислотные остатки, которые способны соединяться друг с другом в неограниченной длины цепи. Это происходит при помощи формирования особых связей — пептидных. Такая связь образуется между четырьмя элементами: углеродом, кислородом, азотом и водородом.
В состав молекулы белка может входить очень много аминокислотных остатков, как одинаковых, так и разных (несколько десятков тысяч и более). Всего разновидностей аминокислот, встречающихся в составе данных соединений, насчитывается 20. Однако их разнообразное сочетание позволяет белкам процветать в количественном и видовом отношении.
Биополимеры белков имеют разные пространственные конформации. Так, каждый представитель может существовать в виде первичной, вторичной, третичной или четвертичной структуры.
Наиболее простая и линейная из них — первичная. Она представляет собой просто ряд аминокислотных последовательностей, соединенных друг с другом.
Вторичная конформация отличается более сложным строением, так как общая макроцепь белка начинает спирализоваться, формируя витки. Две рядом расположенные макроструктуры удерживаются друг возле друга за счет ковалентных и водородных взаимодействий между группировками их атомов. Различают альфа и бета-спирали вторичной структуры белков.
Третичная структура представляет собой свернутую в клубок одну макромолекулу (полипептидную цепь) белка. Очень сложная сеть взаимодействий внутри данной глобулы позволяет ей быть достаточно стабильной и держать принятую форму.
Четвертичная конформация — это несколько полипептидных цепочек, свернутых спирально и закрученных в клубок, которые при этом еще и между собой образуют множественные связи различного типа. Самая сложная глобулярная структура.
Функции белковых молекул
- Транспортная. Ее осуществляют входящие в состав плазматической мембраны клетки-белки. Именно они формируют ионные каналы, по которым способны проходить те или иные молекулы. Также многие белки входят в состав органоидов движения простейших и бактерий, поэтому принимают непосредственное участие в их движении.
- Энергетическая функция выполняется данными молекулами очень активно. Один грамм белка в процессе метаболизма образует 17,6 кДж энергии. Поэтому потребление растительных и животных продуктов, содержащих эти соединения, жизненно необходимо живым организмам.
- Строительная функция заключается в участии белковых молекул в построении большинства клеточных структур, самих клеток, тканей, органов и так далее. Практически любая клетка в основе своей построена из данных молекул (цитоскелет цитоплазмы, плазматическая мембрана, рибосома, митохондрии и другие структуры принимают участие в образовании белковых соединений).
- Каталитическая функция осуществляется ферментами, которые по своей химической природе являются не чем иным, как белками. Без ферментов было бы невозможно большинство биохимических реакций в организме, так как они — биологические катализаторы в живых системах.
- Рецепторная (также сигнальная) функция помогает клеткам ориентироваться и правильно реагировать на любые изменения окружающей среды, как механические, так и химические.
Если рассматривать белки более углубленно, то можно выделить еще некоторые второстепенные функции. Однако перечисленные являются основными.
Нуклеиновые кислоты
Такие биополимеры — это важная часть каждой клетки, будь прокариотическая она или эукариотическая. Ведь к нуклеиновым кислотам относятся молекулы ДНК (дезоксирибонуклеиновой кислоты) и РНК (рибонуклеиновой кислоты), каждая из которых является очень важным звеном для живых существ.
По своей химической природе ДНК и РНК представляют собой последовательности нуклеотидов, соединенных водородными связями и фосфатными мостиками. В состав ДНК входят такие нуклеотиды, как:
- аденин;
- тимин;
- гуанин;
- цитозин;
- пятиуглеродистый сахар дезоксирибоза.
РНК отличается тем, что тимин заменяется на урацил, а сахар — на рибозу.
Благодаря особой структурной организации молекулы ДНК способны выполнять ряд жизненно значимых функций. РНК также играет в клетке большую роль.
Функции таких кислот
Нуклеиновые кислоты — биополимеры, отвечающие за следующие функции:
- ДНК является хранителем и передатчиком генетической информации в клетках живых организмов. У прокариот данная молекула распределена в цитоплазме. В эукариотической клетке находится внутри ядра, отделенного кариолеммой.
- Двуцепочечная молекула ДНК разделена на участки — гены, которые составляют структуры хромосомы. Гены каждого существа формируют специальный генетический код, в котором зашифрованы все признаки организма.
- РНК бывает трех видов — матричная, рибосомальная и транспортная. Рибосомальная принимает участие в синтезе и сборке белковых молекул на соответствующих структурах. Матричная и транспортная переносят считанную с ДНК информацию и расшифровывают ее биологический смысл.
Полисахариды
Данные соединения — это преимущественно растительные полимеры, то есть встречающиеся именно в клетках представителей флоры. Особенно богата полисахаридами их клеточная стенка, которая содержит целлюлозу.
По своей химической природе полисахариды — это макромолекулы углеводов сложного строения. Могут быть линейными, слоистыми, сшитыми конформациями. Мономерами выступают простые пяти-, чаще шестиуглеродные сахара — рибоза, глюкоза, фруктоза. Имеют большое значение для живых существ, так как входят в состав клеток, являются запасным питательным веществом растений, расщепляются с высвобождением большого количества энергии.
Значение различных представителей
Очень важны такие биологические полимеры, как крахмал, целлюлоза, инулин, гликоген, хитин и другие. Именно они и являются важными источниками энергии в живых организмах.
Так, целлюлоза — обязательный компонент клеточной стенки растений, некоторых бактерий. Придает прочность, определенную форму. В промышленности человеком используется для получения бумаги, ценных ацетатных волокон.
Крахмал — запасное питательное вещество растений, которое является также ценным пищевым продуктом для людей и животных.
Гликоген, или животный жир, — запасное питательное вещество животных и человека. Выполняет функции теплоизоляции, энергетического источника, механической защиты.
Смешанные биополимеры в составе живых существ
Помимо тех, что мы рассмотрели, существуют и различные сочетания высокомолекулярных соединений. Такие биополимеры — это сложные смешанные конструкции из белков и липидов (липопротеины) или из полисахаридов и белков (гликопротеины). Также возможно сочетание липидов и полисахаридов (липополисахариды).
Каждый из этих биополимеров имеет множество разновидностей, выполняющих в живых существах ряд важных функций: транспортную, сигнальную, рецепторную, регуляторную, ферментативную, строительную и многие другие. Структура их химически очень сложна и далеко не для всех представителей расшифрована, поэтому и функции до конца не определены. На сегодня известны только самые распространенные, однако значительная часть остается за границами человеческих познаний.
Источник