Витамины
Витамины (лат. vita — жизнь) — группа низкомолекулярных органических соединений разнообразной химической природы и строения. Витамины необходимы для нормального протекания процессов жизнедеятельности в организме и должны поступать с пищей извне, так как самим организмом их синтезируется недостаточное количество.
«Всё есть яд, и ничто не лишено ядовитости; одна лишь доза делает яд незаметным» — Парацельс.
Недостаток витамина в организме (гиповитаминоз) может являться причиной нарушения работы органов и систем органов, приводить к заболеваниям. Равно, как и избыток витамина, гипервитаминоз, может нанести вред организму.
Современная классификация витаминов подразделяет их на основании физического свойства — растворимости:
- Жирорастворимые: A, D, E, K
- Водорастворимые: группа B ( B1, B2, B3 (PP), B6, B9, B12), P, H
Мы будем разбирать витамины по порядку, предложенном в классификации выше. Важно понимать, что каждый витамин участвует в определенных биологических процессах.
Нарушения, которые мы увидим при гиповитаминозах, и есть те самые функции, за которые отвечает витамин. Когда количество витамина достаточно, то нарушения функций не происходит.
Витамин A (ретинол)
Симптомами гиповитаминоза витамина A являются: поражение кожи, ухудшение зрения, сухость роговицы глаза. Снижается иммунитет, у детей может наблюдаться задержка роста и развития.
При авитаминозе (греч. а — без) витамина A развивается куриная слепота — ухудшение сумеречного зрения. Это связано с нарушением синтеза пигмента в палочках сетчатки глаза, которые ответственны за зрение в сумерках.
Витамин A содержится в молоке, молочных продуктах, печени, рыбьем жире. Предшественники витамина А — каротины — содержатся в шпинате, моркови.
Витамин D (кальциферол)
Принимает участие в обмене кальция и фосфора. При его недостатке снижается прочность костной ткани, может развиваться рахит, приводящий к нарушениям роста и развития костной ткани.
Витамин D образуется под действием ультрафиолетового излучения (солнечного света) в коже. Содержится в растительном масле, молочном жире, яичном желтке.
Витамин E (токоферол)
Важнейшая роль витамина E в его антиоксидантной функции. Он препятствует окислению свободными радикалами клеток нашего организма, замедляет старение.
Гиповитаминоз витамина E встречается крайне редко: этот витамин присутствует в необходимом количестве в растительных маслах, способен запасаться в организме.
Витамин K (антигеморрагический фактор)
Антигеморрагический (греч. anti- -приставка, означающая противодействие, и haimorrhagia — сильное кровотечение) — ключевое слово в определении роли этого витамина. Без него свертываемость крови уменьшается, и незначительные травмы могут привести к обширным подкожным кровоизлияниям (гематомам, синякам).
Витамин K принимает участие в синтезе четырех факторов свертываемости. Гиповитаминоз встречается редко, так как частично витамин K синтезируется микрофлорой толстого кишечника. Большое количество данного витамина содержится в шпинате, капусте.
Мы разобрали жирорастворимые витамины: A, D, E, K. Теперь настало время заняться изучением водорастворимых витаминов.
Витамин B1 (тиамин)
Является коферментом многих ферментов, участвующих в аэробном этапе дыхания на кристах митохондрий. Тиамин обеспечивает нормальное протекание белкового и жирового обмена. При его недостатке поражается нервная система.
Вследствие гиповитаминоза витамина B1 развивается болезнь «бери-бери», проявляющаяся болью по ходу нервов, парезами и параличами мышц кистей и стоп.
В современном обществе бери-бери встречается редко, так как поступление с пищей витамина B1 достаточно. Этим витамином особенно богаты злаки, растительная пища.
Витамин B2 (рибофлавин)
Является коферментом ферментов, которые участвуют в синтезе аминокислот. Гиповитаминоз витамина B2 проявляется мышечной слабостью и поражением глаз. Данный витамин содержится почти во всех растительных и животных продуктах.
Витамин B3 (витамин PP, никотиновая кислота)
Является коферментом ферментов, которые участвуют в реакциях аэробного этапа дыхания, протекающего на кристах митохондрий, и биосинтеза в клетке.
Витамин B3 синтезируется микрофлорой толстого кишечника, содержится почти во всех растительных и животных продуктах.
Гиповитаминоз витамина PP проявляется заболеванием — пеллагрой, которая включает в себя воспаление кожи (дерматит), поражение пищеварительной системы (язвенная болезнь) и нервной системы — воспалением нервов (неврит).
Никотиновая кислота содержится в рыбе, хлебе, мясе, молоке, печени, чае.
Витамин B6 (пиридоксин)
Является коферментом ферментов, которые участвуют в синтезе биогенных аминов и аминокислот. Гиповитаминоз витамина B6 встречается редко и выражается в воспалении кожи (дерматите).
Содержится витамин в яйцах, мясе, рыбе, овощах, помимо этого частично синтезируется микрофлорой толстого кишечника.
Витамин B9 (фолиевая кислота)
Является коферментом многих ферментов. Гиповитаминоз B9 (фолиевой кислоты) случается редко, приводит к снижению количества эритроцитов в крови (анемии), нарушению синтеза ДНК в клетках красного костного мозга.
В обязательном порядке фолиевая кислота назначается беременным для снижения вероятности развития дефектов нервной трубки у плода. Фолиевая кислота также необходима и мужчинам для нормального процесса формирования сперматозоидов.
Фолиевой кислотой (лат. folium — лист) богаты зеленые листья растений.
Витамин B12 (кобаламин)
Является коферментом ферментов, осуществляющих перенос водорода и метильных групп при изомеризации. Гиповитаминоз кобаламина приводит к развитию анемии Аддисона-Бирмера (B12-дефицитная анемия), а в случае авитаминоза — к нарушению функции нервной системы.
В случае гиповитаминоза нарушается кроветворение в красном костном мозге, в результате чего эритроциты становятся крупными, нарушается перенос кислорода к тканям. Клетки тканей испытывают кислородное голодание — гипоксию, в результате чего их функция нарушается.
Кобаламин синтезируется микрофлорой толстого кишечника, содержится в печени.
Витамин C (аскорбиновая кислота)
Принимает участие в синтезе коллагена в соединительной ткани, является антиоксидантом — предотвращает процессы свободнорадикального окисления клеток организма, замедляет старение.
При гиповитаминозе аскорбиновой кислоты развивается заболевание цинга: нарушаются обменные процессы в соединительной ткани. Раньше цингой особенно часто болели моряки, рацион питания которых был лишен главного источника витамина C — цитрусовых.
Цинга проявляется выпадением зубов, кровоточивостью десен, ломкостью сосудов. Снижается иммунитет, возможно развитие гипохромной анемии.
Витамин C содержится не только в цитрусовых, им также богаты плоды шиповника, болгарского красного перца, черной смородины и облепихи.
Витамин P (биофлавоноиды)
Участвует в обменных процессах в соединительной ткани, стабилизирует ее. Действие витамина P тесно взаимосвязано с действием витамина C. Обладает антиоксидантным действием. Гиповитаминоз витамина P сопровождается повышением ломкости кровеносных капилляров.
Большое количество витамина P содержится в тех же продуктах, которые являются источником витамина C.
Витамин H (биотин)
Является коферментом ферментов, участвующих в реакциях биосинтеза аминокислот, жирных кислот. Гиповитаминоз биотина встречается крайне редко, сопровождается воспалением кожи (дерматит).
Большое количество витамина H синтезируется микрофлорой толстого кишечника, содержится в печени, почках, картофеле, желтке яйца, луке.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Источник
Витамины
Витами́ны (от лат. vita — «жизнь») — группа низкомолекулярных органических соединений относительно простого строения и разнообразной химической природы. Это сборная по химической природе группа органических веществ, объединённая по признаку абсолютной необходимости их для гетеротрофного организма в качестве составной части пищи. Автотрофные организмы также нуждаются в витаминах, получая их либо путем синтеза, либо получая из окружающей среды. Так, витамины входят в состав питательных сред для выращивания организмов фитопланктона [1] . Витамины содержатся в пище (или в окружающей среде) в очень малых количествах, и поэтому относятся к микронутриентам.
Наука на стыке биохимии, гигиены питания, фармакологии и некоторых других медико-биологических наук, изучающая структуру и механизмы действия витаминов, а также их применение в лечебных и профилактических целях, называется витаминологией. [2]
Содержание
Общие сведения
Витамины участвуют во множестве биохимических реакций, выполняя каталитическую функцию в составе активных центров большого количества разнообразных ферментов либо выступая информационными регуляторными посредниками, выполняя сигнальные функции экзогенных прогормонов и гормонов.
Витамины не являются для организма поставщиком энергии и не имеют существенного пластического значения. Однако витаминам отводится важнейшая роль в обмене веществ.
Концентрация витаминов в тканях и суточная потребность в них невелики, но при недостаточном поступлении витаминов в организм наступают характерные и опасные патологические изменения.
Большинство витаминов не синтезируются в организме человека. Поэтому они должны регулярно и в достаточном количестве поступать в организм с пищей или в виде витаминно-минеральных комплексов и пищевых добавок. Исключения составляют витамин К, достаточное количество которого в норме синтезируется в толстом кишечнике человека за счёт деятельности бактерий, и витамин В3, синтезируемый бактериями кишечника из аминокислоты триптофана.
С нарушением поступления витаминов в организм связаны 3 принципиальных патологических состояния: недостаток витамина — гиповитаминоз, отсутствие витамина — авитаминоз, и избыток витамина — гипервитаминоз.
Известно около полутора десятков витаминов. Исходя из растворимости, витамины делят на жирорастворимые — A, D, E, F, K и водорастворимые — все остальные (B, C и др.). Жирорастворимые витамины накапливаются в организме, причём их депо являются жировая ткань и печень. Водорастворимые витамины в существенных количествах не депонируются (не накапливаются) и при избытке выводятся с водой. Это объясняет то, что гиповитаминозы довольно часто встречаются относительно водорастворимых витаминов, а гипервитаминозы чаще наблюдаются относительно жирорастворимых витаминов.
Витамины отличаются от других органических пищевых веществ тем, что не включаются в структуру тканей и не используются организмом в качестве источника энергии (не обладают калорийностью).
История
Важность некоторых видов еды для предотвращения определённых болезней была известна ещё в древности. Так, древние египтяне знали, что печень помогает от куриной слепоты. Ныне известно, что куриная слепота может вызываться недостатком витамина A. В 1330 году в Пекине Ху Сыхуэй опубликовал трёхтомный труд «Важные принципы пищи и напитков», систематизировавший знания о терапевтической роли питания и утверждавший необходимость для здоровья комбинировать разнообразные продукты.
В 1747 году шотландский врач Джеймс Линд [en] , пребывая в длительном плавании, провел своего рода эксперимент на больных матросах. Вводя в их рацион различные кислые продукты, он открыл свойство цитрусовых предотвращать цингу. В 1753 году Линд опубликовал «Трактат о цинге», где предложил использовать лимоны и лаймы для профилактики цинги. Однако эти взгляды получили признание не сразу. Тем не менее, Джеймс Кук на практике доказал роль растительной пищи в предотвращении цинги, введя в корабельный рацион кислую капусту, солодовое сусло и подобие цитрусового сиропа. В результате он не потерял от цинги ни одного матроса — неслыханное достижение для того времени. В 1795 году лимоны и другие цитрусовые стали стандартной добавкой к рациону британских моряков. Это послужило появлением крайне обидной клички для матросов — лимонник. Известны так называемые лимонные бунты: матросы выбрасывали за борт бочки с лимонным соком.
В 1880 году русский биолог Николай Лунин из Тартуского университета скармливал подопытным мышам по отдельности все известные элементы, из которых состоит коровье молоко: сахар, белки, жиры, углеводы, соли. Мыши погибли. В то же время мыши, которых кормили молоком, нормально развивались. В своей диссертационной (дипломной) работе Лунин сделал вывод о существовании какого-то неизвестного вещества, необходимого для жизни в небольших количествах. Вывод Лунина был принят в штыки научным сообществом. Другие учёные не смогли воспроизвести его результаты. Одна из причин была в том, что Лунин использовал тростниковый сахар, в то время как другие исследователи использовали молочный сахар, плохо очищенный и содержащий некоторое количество витамина B. [3]
В последующие годы накапливались данные, свидетельствующие о существовании витаминов. Так, в 1889 году голландский врач Христиан Эйкман обнаружил, что куры при питании варёным белым рисом заболевают бери-бери, а при добавлении в пищу рисовых отрубей — излечиваются. Роль неочищенного риса в предотвращении бери-бери у людей открыта в 1905 году Уильямом Флетчером. В 1906 году Фредерик Хопкинс предположил, что помимо белков, жиров, углеводов и т. д., пища содержит ещё какие-то вещества, необходимые для человеческого организма, которые он назвал «accessory food factors». Последний шаг был сделан в 1911 году польским учёным Казимиром Функом, работавшим в Лондоне. Он выделил кристаллический препарат, небольшое количество которого излечивало бери-бери. Препарат был назван «Витамайн» (Vitamine), от латинского vita — «жизнь» и английского amine — «амин», азотсодержащее соединение. Функ высказал предположение, что и другие болезни — цинга, пеллагра, рахит — тоже могут вызываться недостатком определенных веществ.
В 1920 году Джек Сесиль Драммонд предложил убрать «e» из слова «vitamine», потому что недавно открытый витамин C не содержал аминового компонента. Так «витамайны» стали «витаминами».
В 1923 году доктором Гленом Кингом была установлена химическая структура витамина С, а в 1928 году доктор и биохимик Альберт Сент-Дьёрди впервые выделил витамин С, назвав его гексуроновой кислотой. Уже в 1933 швейцарские исследователи синтезировали идентичную витамину С столь хорошо известную аскорбиновую кислоту.
В 1929 году Хопкинс и Эйкман за открытие витаминов получили Нобелевскую премию, а Лунин и Функ — не получили. Лунин стал педиатром, и его роль в открытии витаминов была надолго забыта. В 1934 году в Ленинграде состоялась Первая всесоюзная конференция по витаминам, на которую Лунин (ленинградец) не был приглашён.
В 1910-е, 1920-е и 1930 годы были открыты и другие витамины. В 1940 годы была расшифрована химическая структура витаминов.
В 1970 Лайнус Полинг, дважды лауреат Нобелевской премии, потряс медицинский мир своей первой книгой «Витамин С, обычная простуда и грипп», в которой дал документальные свидетельства об эффективности витамина С. С тех пор «аскорбинка» остается самым известным, популярным и незаменимым витамином для нашей повседневной жизни. Исследовано и описано свыше 300 биологических функций витамина. Главное, что в отличие от животных, человек не может сам вырабатывать витамин С и поэтому его запас необходимо пополнять ежедневно.
Витамины для человека — нормы
Буквенное обозначение | Химическое название | Растворимость (Ж — жирорастворимый В — водорастворимый) | Последствия авитаминоза, физиологическая роль | Верхний допустимый уровень [4] | Суточная потребность [4] |
---|---|---|---|---|---|
A1 А2 | Ретинол Дегидроретинол | Ж | Куриная слепота, ксерофтальмия | 3000 мкг | 900 мкг |
B1 | Тиамин | В | Бери-бери | нет данных | 1,5 мг |
B2 | Рибофлавин | В | Арибофлавиноз | нет данных | 1,8 мг |
B3 , PP | никотинамид, никотиновая кислота, ниацин | В | Пеллагра | 60 мг | 20 мг |
B4 | Холин | В | Расстройства печени | 20 г | 425—550 мг |
B5 | Пантотеновая кислота, кальция пантотенат | В | Боли в суставах, выпадение волос, судороги конечностей, параличи, ослабление зрения и памяти. | нет данных | 5 мг |
B6 | Пиридоксин | В | Анемия, головные боли, утомляемость, дерматиты и др. кожные заболевания, кожа лимонно-жёлтого оттенка, нарушения аппетита, внимания, памяти, работы сосудов | 25 мг | 2 мг |
B7, H | Биотин | В | Поражения кожи, исчезновение аппетита, тошнота, отечность языка, мышечные боли, вялость, депрессия | нет данных | 50 мкг |
B8 | Инозитол [# 1] | В | Нет данных | нет данных | 500 мг |
B9, Bс, M | Фолиевая кислота | В | Фолиево-дефицитная анемия, нарушения в развитии спинальной трубки у эмбриона | 1000 мкг | 400 мкг |
B10 | n-Аминобензойная кислота, ПАБ | В | Стимулирует выработку витаминов кишечной микрофлорой. Входит в состав фолиевой кислоты | Не установлена | |
B11, Bт | Левокарнитин [# 1] | В | Нарушения метаболических процессов | нет данных | 300 мг |
B12 | Цианокобаламин | В | Пернициозная анемия | нет данных | 3 мкг |
B13 | Оротовая кислота [# 1] | В | Различные кожные заболевания (экзема, нейродермит, псориаз, ихтиоз) | нет | 0,5—1,5 мг |
B15 | Пангамовая кислота [# 1] | В | нет данных | 50—150 мг | |
C | Аскорбиновая кислота | В | Цинга (лат. scorbutus — цинга) | 2000 мг | 90 мг |
D1 D2 D3 D4 D5 | Ламистерол Эргокальциферол Холекальциферол Дигидротахистерол 7-дегидротахистерол | Ж | Рахит, остеомаляция | 50 мкг | 10—15 мкг [5] |
E | α-, β-, γ-токоферолы | Ж | Нервно-мышечные нарушения: спинально-мозжечковая атаксия (атаксия Фридрейха), миопатии. Анемия. [6] | 300 мг | 15 мг |
F | Смесь триглицеридов жирных кислот Омега-3 и Омега-6 | Ж | Атеросклероз, замедление развития, ускоренное старение тканей | нет данных | нет данных |
K1 K2 | Филлохинон Фарнохинон | Ж | Гипокоагуляция | нет данных | 120 мкг |
N | Липоевая кислота, Тиоктовая кислота [# 1] | В | Необходима для нормального функционирования печени | 75 мг | 30 мг |
P | Биофлавоноиды, полифенолы [# 1] | В | Ломкость капилляров | нет данных | нет данных |
U | Метионин [# 1] [7] S-метилметионинсульфоний-хлорид | В | Противоязвенный фактор; витамин U (от лат. ulcus — язва) | ||
Примечания |
Как правило суточная норма витаминов различается в зависимости от возраста, рода занятий, сезона года, беременности, пола и др. факторов.
Антивитамины
Антивитамины (греч. ἀντί — против, лат. vita — жизнь) — группа органических соединений, подавляющих биологическую активность витаминов.
Это соединения, близкие к витаминам по химическому строению, но обладающие противоположным биологическим действием. При попадании в организм антивитамины включаются вместо витаминов в реакции обмена веществ и тормозят или нарушают их нормальное течение. Это ведёт к витаминной недостаточности даже в тех случаях, когда соответствующий витамин поступает с пищей в достаточном количестве или образуется в самом организме. Антивитамины известны почти для всех витаминов. Например, антивитамином витамина B1 (тиамина) является пиритиамин, вызывающий явления полиневрита.
Поливитамины
Поливитамины (греч. πολύ — много, лат. vita — жизнь) — фармакологические препараты или естественные многокомпонентные полидисперсные вещества, содержащие в своём составе комплекс витаминов и минеральные соединения.
Единственным натуральным пищевым поливитамином является грудное молоко, в котором содержится ценный набор из многих эссенциальных витаминов. Для профилактики гиповитаминозов, в особенности у детей, рекомендуется использовать комплексные витаминные препараты. Поливитаминные препараты применяются не только для профилактики и лечения гиповитаминозов, но и в комплексной терапии таких расстройств питания, как гипотрофия или паратрофия.
Высокий уровень метаболизма у детей, не только поддерживающий жизнедеятельность, но и обеспечивающий рост и развитие детского организма, требует достаточного и регулярного поступления не только витаминов, но и минералов. По мнению отечественных ученых, для российских детей и подростков весьма актуально применение витаминно-минеральных комплексов [8] .
Источник