Вопрос 57. Витамины — классификация, источники и биологическая ценность.
Витамины (лат. vita — жизнь + амины) — поступающие с пищей незаменимые вещества, необходимые для поддержания жизненных функций организма. Иззвестно более 50 витаминов.
Функции витаминов:1) являются биологическими катализаторами и взаимодействуют с ферментами и гормонами;2)являются коферментами, т.е. низкомолекулярными компонентами фер-ментов;3) принимают участие в регуляции процесса обмена веществ в виде ингибиторов или активаторов;4) участвуют в образовании гормонов и медиаторов;5) снижают воспалительные явления и способствуют восстановлению поврежденной ткани;6) способствуют росту, улучшению минерального обмена, сопротивляемости к инфекциям, предохраняют от малокровия, повышенной кровоточивости;7) обеспечивают высокую работоспособность.
Заболевания, которые развиваются при отсутствии витаминов в пище, называются авитаминозами. Функциональные нарушения, возникающие при частичной недостаточности витаминов, — гиповитаминозы. Заболевания, вызываемые избыточным потреблением витаминов, — гипервитаминозы.Витамины обозначают буквами латинского алфавита, химическими и физиологическими названиями. По растворимости все витамины делят на 2 группы: водо- и жирорастворимые.
1) Витамин С — аскорбиновая кислота, антицинготный. Содержится в ягодах шиповника, черной смородины, лимонах. Суточная потребность — 50-100 мг. При отсутствии витамина С развивается цинга (скорбут): кровоточивость и разрыхление десен, выпадение зубов, кровоизлияния в мышцах и суставах. Костная ткань становится более пористой и хрупкой (могут быть переломы). Возникает общая слабость, вялость, истощение, пониженная сопротивляемость к инфекциям,
2) Витамин B1 — тиамин, антиневрин. Содержится в пивных дрожжах, печени, свинине, орехах, цельных зернаах хлебных злаков, в желтке яйца. Суточная потребность — 2-3 мг.При отсутствии витамина В1 развивается заболевание «бери-бери»: полиневрит, нарушение деятельности сердца и желудочно-кишечного тракта.
3) Витамин В2 — рибофлавин (лактофлавин), антисеборейный. Содержится в печени, почках, дрожжах. Суточная потребность — 2-3 мг. При авитаминозе у взрослых наблюдается нарушение обмена веществ,поражение глаз, слизистой облочки полости рта, губ, атрофия сосочков языка, себорея, дерматит, падение веса; у детей — задержка роста.
4) Витамин В3 — пантотеновая кислота, антидерматитный. Суточная потребность — 10 мг. При авитаминозе возникает слабость, быстрая утомляемость, головокружение, дерматиты, поражение слизистых оболочек,невриты.
5) Витамин В6 — пиридоксин, антидерматитный (адермин). Содержится в рисовых отрубях, бобах, дрожжах, почках, печени, мясе.Синтезируется микрофлорой толстого кишечника. Суточная потребность — 2-3 мг. При авитаминозе наблюдается тошнота, слабость, дерматит у взрослых. У младенцев проявлением авитаминоза являются судороги (конвульсии).
6) Витамин В12 — цианокобаламин, антианемический. Содержится в печени рогатого скота и цыплят. Синтезируется микрофлорой толстого кишечника. Суточная потребность — 2-3 мкг. Влияет на кроветворение и предохраняет от злокачественной ангемии Т. Аддисона-А.Бирмера.
7) Виатмин Вс — фолиевая кислота (фолацин), антианемический. Содержится в салате, шпинате, капусте, томатах, моркови, пшенице, печени, мясе, яйцах. Синтезируется в толстом кишечнике микрофлорой. Суточная потребность — 3 мг. Влияет на синтез нуклеиновых кислот, кроветворение и предохраняет от мегалобластной анемии.
8) Витамин Р — рутин (цитрин), капилляроукрепляющий витамин. Содержится в лимонах, гречневой крупе, черной смородине, черноплодной рябине, плодах шиповника.Суточная потребность — 50 мг. Уменьшает проницаемость и ломкость капилляров, усиливает действие витамина С и способствует накоплению его в организме.
9) Витамин В5 (РР) — никотиновая кислота (никотинамид, ниацин), противопеллагрический. Содержится в дрожжах, свежих овощах, мясе. Суточная потребность — 15 мг. Синтезируется в толстом кишечнике из аминокислоты триптофана. Предохраняет от пеллагры: дерматита, диареи (поноса), деменции (нарушения психики).
1) Витамин А — ретинол, противоксерофтальмический. Содержиится в рыбьем жире, печени трески и палтуса. Суточная потребность — 1,5 мг. Способствует росту и предохраняет от куриной, или ночной, слепоты (гемералопии), сухости роговицы глаза (ксерофтальмии), размягчения и некроза роговицы (кератомаляции). Предшественником витамина А является каротин, содержащийся в растениях: моркови, абрикосах, листьях петрушки.
2) Витамин D — кальциферол, противорахитический. Содержится в коровььем масле, желтке яйца, рыбьем жире. Суточная потребность — 5-10 мкг, для детей грудного возраста — 10-25 мкг. Регулирует обмен кальция и фосфора в организме и предохраняет от рахита. Предшественником витамина D в организме является 7-дегидро-холестерин, который под действием ультрафиолетовых лучей в тканях (в коже) превращается в витамин D.
3).Витамин Е — токоферол, противостерильный витамин. Содержится в салате, петрушке, растительном масле, овсяной муке, кукурузе.Суточная потребность — 10-15 мг. Обеспечивает функцию размножения, нормальное протекание беременности. При его отсутсттвии происходит дегенерация мышц, развиваются мышечная слабость и костная атрофия.
4).Витамин К — викасол (филлохинон), антигеморрагический витамин. Содержится в листьях шпината, салата, капусты, крапивы, в томатах, ягодах рябины, в печени. Синтезируется микрофлорой толстого кишечника. Для всасывания необходима желчьь.Суточная потребность — 0,2-0,3 мг.Усиливает биосинтез протромбина в печени и способствует свертыванию крови.
5).Витамин F — комплекс ненасыщенных жирных кислот (линолевой, линоленовой, арахидоновой) необходим для нормального жирового обмена в организме. Суточная потребность -10-12 г.
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.
Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.
Источник
Что такое биологическая ценность витаминов
Витамины — группы разнородных по химической природе веществ, не синтезируемых или синтезируемых в недостаточных количествах в организме, но необходимых для нормального осуществления обмена веществ, роста, развития организма и поддержания здоровья. Эти вещества не являются непосредственными источниками энергии и не выполняют пластических функций. Они являются составными компонентами ферментных систем и играют роль катализаторов в обменных процессах.
Сведения об источниках витаминов, их суточной потребности для взрослого человека и значении в осуществлении физиологических функций приведены в табл. 12.2.
Таблица 12.2. Физиологическая роль, потребность организма и источник поступления витаминов
Витамин | Суточная потребность взрослого человека | Основные источники | Физиологическая роль | Признаки недостаточности |
А* (ретинол) | А,-0,9 мг, бета-каротин — 1,8 мг | Животные жиры, мясо, рыба, яйца, молоко | Необходим для синтеза зрительного пигмента родопсина; оказывает влияние на процессы роста, размножения, пролиферации и ороговения эпителия | Нарушаются функции сумеречного зрения, роста, развития и размножения. Развивается сухость поверхности конъюнктивы и роговицы, изъязвление роговицы |
D (кальциферол) | 2,5 мкг | Печень и мясо млекопитающих, печень рыб, яйца | Необходим для всасывания из кишечника ионов кальция и для обмена в организме кальция и фосфора | Недостаточное поступление в детском возрасте приводит к развитию рахита, что проявляется нарушением окостенения и роста костей, их декаль-цификацией и размягчением |
РР** (никотиновая кислота) | 150 мг | Мясо, печень, почки, рыба, дрожжи | Участвует в процессах клеточного дыхания (переносе водорода и электронов); регуляции секреторной и моторной функции желудочно-кишечного тракта | Воспаление кожи (пеллагра), расстройства желудочно-кишечного тракта (понос) |
К (филлохиноны) | До 1 мг | Зеленые листья овощей, печень | Участвует в синтезе факторов свертывания крови, протромбина и др. | Замедленное свертывание крови, спонтанные кровотечения |
Е (токоферолы) | 10-12 мг | Растительные масла, зеленые листья овощей, яйца | Антиоксидант (ингибитор окисления) | Четко определенных симптомов недостаточности у человека не описано |
С (аскорбиновая кислота) | 50-100 мг | Свежие фрукты и растения (особенно шиповник, черная смородина, цитрусовые) | Участвует в гидрокси-лировании, образовании коллагена, включении железа в ферритин. Повышает устойчивость организма к инфекциям | Развивается цинга, проявлением которой являются кровоточивость десен, мелкие кровоизлияния в коже, поражение стенок кровеносных сосудов |
В1 (тиамин) | 1,4-2,4 мг | Целые зерна, бобы, печень, почки, отруби, дрожжи | Участвует в энергетическом обмене (процессах декарбоксили-рования), является ко-ферментом пируват-карбоксилазы | Развивается заболевание бери-бери, сопровождающееся полиневритом, нарушением сердечной деятельности и функций желудочно-кишечного тракта |
В2 (рибофлавин) | 2-3 мг | Зерновые, бобы, печень, молоко, дрожжи, яйца | Входит в состав флавиновых ферментов. Осуществляет перенос водорода и электронов | Поражение глаз (светобоязнь), поражение слизистой оболочки полости рта и языка |
В3 (пантотеновая кислота) | 10 мг | Зерновые, бобы, картофель, печень, яйца, рыба | Перенос ацетильной группы (КоА) при синтезе жирных кислот, стероидов и других соединений | Общая слабость, головокружение, нейромоторные нарушения, воспаления кожи, поражения слизистых оболочек |
В6 (пиридоксин) | 1,5-3 мг | Зерно, бобы, мясо, печень, дрожжи, рыба. Синтезируется микрофлорой кишечника | Кофермент трансам и-назы, декарбоксилазы, дегидратазы, десульфогидразы | Повышенная раздражительность, судороги, ги-похромная анемия. Играет важную роль в обмене аминокислот, белков и жиров, а также в процессах кроветворения |
В12 (цианокобаламин) | 2 мкг | Печень, синтезируется микроорганизмами кишечника | Компонент ферментов метаболизма нуклеиновых кислот и метилирования. Необходим для гемопоэза | Злокачественная анемия |
Фолиевая кислота | 400 мг | Зеленые листья, овощи, мясо, молоко, дрожжи. Синтезируется микроорганизмами кишечника | Необходима для синтеза пуринов и метионина и метаболизма одноуглеродных фрагментов молекул. Стимулирует процесс кроветворения | Анемия |
Витамин H***(биотин) | 150— 200 мкг | Молоко, яичный желток, печень, синтезируется микроорганизмами кишечника | Кофермент дезаминаз, карбоксилаз, трансфераз, осуществляет перенос С02 | Дерматит (воспаление кожи) с гиперфункцией сальных желез |
*Проявления передозировок витамина: головные боли, эйфория, анемия, изменения со стороны кожи, слизистых оболочек, костной ткани.
** Проявление передозировки витамина: нарушение функций ЦНС и почек; вымывание Са 2+ из костей и повышение его уровня в крови.
***Гиповитаминоз может развиваться при потреблении больших количеств сырого яичного белка, связывающего биотин.
Основными источниками водорастворимых витаминов (группы В, витамин С) являются, как правило, пищевые продукты растительного происхождения и в меньшей мере животного происхождения. Эти витамины легко всасываются из желудочно-кишечного тракта в кровь и лимфу.
Основными источниками жирорастворимых витаминов (витамины A, D, Е, К) являются продукты животного происхождения. Для удовлетворения потребностей организма в витаминах имеет значение не только достаточное содержание в пищевом рационе богатых витаминами продуктов растительного и животного происхождения, но и нормальное осуществление процессов пищеварения и всасывания веществ в желудочно-кишечном тракте. Так, при нарушениях пищеварения в тонком кишечнике, связанных с недостаточным поступлением в двенадцатиперстную кишку желчи или панкреатической липазы, может наблюдаться недостаточное всасывание из желудочно-кишечного тракта витаминов при их нормальном содержании в пище.
Дополнительным источником витаминов К, В6, и В12 является микрофлора толстой кишки. Микроорганизмы синтезируют эти витамины (наряду с другими веществами), которые частично усваиваются организмом.
Длительное голодание, питание пищевыми продуктами, не содержащими или содержащими малое количество витаминов, употребление в пищу продуктов после их длительного хранения или неправильной переработки, нарушение пищеварительных функций могут приводить к недостаточному поступлению витаминов в организм (гиповитаминозу).
Гиповитаминоз или полное прекращение поступления витамина в организм (авитаминоз) приводят как к неспецифическим изменениям функций (снижению умственной и физической работоспособности), так и к специфическим нарушениям в организме, характерным для гипо- и авитаминоза (см. табл. 12.2). Избыточный прием витаминов может приводить к гипервитаминозу. При поступлении водорастворимых витаминов в дозах, превышающих суточную потребность, эти вещества могут быстро выводиться из организма с мочой. При этом обычно признаков гипервитаминоза не отмечается. Однако, например, потребление больших количеств витамина В6 может сопровождаться нарушением функции периферических нервов. Изменения в организме, возникающие при гипервитаминозах A, D, РР, приведены в табл. 12.2.
Источник
Пищевая ценность
Пищевая ценность — понятие, отражающее всю полноту полезных свойств пищевого продукта, включая степень обеспечения физиологических потребностей человека в основных пищевых веществах, энергию и органолептические свойства. Характеризуется химическим составом пищевого продукта с учетом его потребления в общепринятом количестве.
Все вещества, входящие в состав пищевых продуктов и пищи, подразделяются на две группы: органические (белки, углеводы, жиры, пищевые кислоты, витамины, ферменты) и минеральные (вода, макро- и микроэлементы). Среди них имеются вещества, определяющие пищевую, в том числе энергетическую и биологическую, ценность, участвующие в формировании структуры, вкуса, аромата и цвета пищевых продуктов [3].
Пищевая ценность определяется не только содержанием биологически активных пищевых веществ (нутриентов), но и их соотношением, усвояемостью и доброкачественностью.
Термины «энергетическая» и «биологическая» ценность являются более узким понятием пищевой ценности.
Энергетическая ценность характеризует ту долю энергии, которая может высвободиться из пищевых продуктов в процессе биологического окисления и использоваться для обеспечения физиологических функций организма. Пища является единственным источником энергии для человека.
Количество энергии, выделяемой при усвоении организмом пищевых продуктов, называется калорийностью. При окислении одного грамма жира организм получает 9 ккал (37,7 кДж); одного грамма белка — 4 ккал (16,7 кДж); одного грамма углеводов — 3,75 ккал (15,7 кДж). Это калорийность брутто, т.е. та, которая содержится в продукте и выделяется при его сгорании, или теоретическая энергетическая ценность. Но пищевые вещества усваиваются организмом не полностью. Так, белки усваиваются на 94,5%, жиры — на 94,0%; углеводы — на 95,6%. Поэтому следует теоретическую энергетическую ценность умножать на коэффициент усвояемости. Коэффициент усвояемости сахарозы равен 1, животных жиров 0,85 (за исключением сливочного масла), растительных жиров 0,95, белков в зависимости от их природы 0,85-0,95. Зная содержание в рационе белков, жиров и углеводов и коэффициенты их усвояемости, можно легко рассчитать фактическую энергетическую ценность.
Продукты, входящие в рацион питания, должны содержать вещества, необходимые для получения энергии, обмена веществ и построения тканей. В зависимости от характера, трудовой деятельности, возраста, пола, состояния здоровья человека необходимо в сутки 2200-3900 ккал (9218-16341 кДж) [2].
Для организма важно, какие группы пищевых веществ обеспечивают калорийность питания. Для нормальной жизнедеятельности человека необходимо определенное соотношение белков, жиров и углеводов, а также наличие витаминов и минеральных веществ.
Белки должны составлять, в среднем, 12%, жиры 30-35% от общей калорийности рациона, остальное — углеводы.
В настоящее время энергетическая ценность общедоступного рациона, соответствующего средним энергетическим затратам человека, составляет 2000-2500 ккал (8380-10500 кДж). В состав этого рациона входят главным образом продукты, подвергнутые кулинарной обработке, консервированию и хранению, значит, и с низким содержанием витаминов и других биологически активных веществ. Как же обеспечить в этом количестве энергии необходимые организму нутриенты? Этот показатель получил название пищевой плотности рациона; характеризуется количеством незаменимых пищевых веществ в 1000 ккал (4190 кДж).
Проблема пищевой плотности рациона может быть успешно решена путем производства низкокалорийных продуктов повышенной пищевой ценности, обогащенных незаменимыми нутриентами [4].
Биологическая ценность пищевых продуктов определяется главным образом наличием в них незаменимых факторов питания, не синтезируемых в организме или синтезируемых в ограниченном количестве и с малой скоростью. К основным незаменимым компонентам пищи относятся 8-10 аминокислот, 3-5 полиненасыщенных жирных кислот, все витамины и большинство минеральных веществ, а также природные физиологические вещества высокой биологической активности: фосфолипиды, белково-лецитиновые и глюкопротеиновые комплексы.
Биологическая ценность пищевых продуктов — более общее понятие и характеризуется биологической ценностью белков, жиров, угле-водов, витаминов и минеральных веществ.
Биологическая ценность белка характеризуется степенью соответствия его аминокислотного состава потребностям организма в аминокислотах для синтеза белка, а также способностью к перевариванию.
Несмотря на многообразие белковых веществ в природе, в построении организма человека участвует 22 аминокислоты, из которых восемь (лейцин, изолейцин, триптофан, валин, треонин, лизин, метионин, фенилаланин) являются незаменимыми, так как они не синтезируются в организме и должны поступать извне с продуктами питания. Кроме того, аминокислоты гистидин и цистин незаменимы для организма грудных детей.
Показатель соответствия аминокислотного состава пищевых и синтезируемых белков послужил основой для создания ряда методов определения и сравнения биологической ценности различных пищевых белков.
Аминокислотный состав пищевых продуктов сравнивают с аминокислотным составом идеального (гипотетического) белка, принятого экспертным комитетом ФАО-ВОЗ в 1973 г., путем определения аминокислотного скора (АКС).
Одним из доступных способов расчета АКС является вычисление отношения содержания незаменимых аминокислот (АКн) в исследуемом и идеальном белке
АКС = 100%,
где m1, m2 — количество незаменимой аминокислоты в 1 г, соответственно, исследуемого и идеального белка.
В одном грамме идеального белка содержится восемь АКн в следующем количестве, мг: изолейцин — 40; лейцин — 70; лизин — 55; метионин + цистин — 35; фенилаланин + тирозин — 60; триптофан — 10; треонин — 40; валин — 50.
В идеальном белке АКС каждой АКн принимается за 100%. Лимитирующей биологическую ценность АКн считается та, АКС которой имеет значение меньше 100%.
Не все продукты питания полноценны по аминокислотному составу. Животные белки, т.е. белки мяса, молока, яиц, наиболее близки по своему скору идеальному, растительные — дефицитны по отдельным АКн, чаще лизину, метионину, цистину.
Несбалансированность аминокислотного состава белков может привести к нарушению обмена веществ, замедлению синтеза белка и роста организма. Избыток одних АКн приводит к недостаточности и плохой усвояемости других.
Существенное значение имеет сбалансированность незаменимых АКн, особенно соотношение таких эссенциальных АКн, как триптофан, метионин и лизин. Оптимальное их соотношение 1 : 2 : 3,5 (4,0). Триптофан участвует в процессе восстановления тканей и содержится в мясе, горохе, фасоли. Метионин предупреждает ожирение почек, поражение легких, способствует образованию инсулина; содержится в мясе и зерновых. Лизин нормализует кровообращение, поддерживает необходимый уровень гемоглобина.
Однако опыты на животных показали, что расчетные данные АКС не совпадают с экспериментальными, которые обычно выше, а простое соответствие аминокислотного состава пищевых и синтезируемых белков дает только примерное представление о биологической ценности белков.
Некоторые исследователи считают, что биологическая ценность белков связана также с особенностями строения белковых компонентов пищи, влияющих на растворимость продукта в воде, на студнеобразование, вязкость, влагоудерживающую способность и на другие молекулярные характеристики продукта. Одна из важнейших характеристик пищевой ценности — перевариваемость пищи — существенно зависит от доступности белковых и других биополимерных соединений к воздействию ферментов.
При применении биологических методов (на животных) для определения биологической ценности белков рассчитывают коэффициент эффективности белка (КЭБ), коэффициент чистой утилизации белка (ЧУБ), показатель биологической ценности белка (ПБЦ), коэффициент ретенции (задержки) азота (КРА) и другие [5].
Биологическая ценность жиров определяется входящими в их состав полиненасыщенными жирными кислотами (ПНЖК), называемыми витамином F. ПНЖК относятся к незаменимым факторам питания, так как не образуются в организме и должны поступать с пищей.
Наряду с энергетической функцией, ПНЖК способствуют ускорению обмена холестерина в организме, снижению образования липопротеидов низкой плотности, ответственных за атеросклероз, уменьшению синтеза триглицеридов.
Для человека эссенциальными жирными кислотами являются линолевая С18:2 и линоленовая С18:3. Линолевая кислота превращается в организме в арахидоновую С22:4, а линоленовая — в эйкозапентаеновую. Недостаточное поступление с пищей линолевой кислоты вызывает в организме нарушение биосинтеза арахидоновой кислоты, входящей в большом количестве в его структурные липиды, а также простагландинов. Арахидоновая кислота составляет 20-25% от всех жирных кислот фосфолипидов клеточных и субклеточных биомембран. ПНЖК, образующиеся из линоленовой кислоты (эйкозапентаеновая и докозагексаеновая), также постоянно присутствуют в липидах мембран, но в значительно меньшем количестве (2-5%), чем арахидоновая кислота [5]
Важно подчеркнуть, что методы определения биологической ценности жиров являются интегральными, так как они не выявляют влияния каждой из кислот на метаболизм липидов. В отличие от белков в настоящее время не представляется возможным определить биологическую ценность жиров на основе их химического состава.
А. А. Покровский отмечал, что один из перспективных подходов в решении данной проблемы — это изучение влияния жиров на жирно-кислотный состав клеточных мембран [6]. Им было показано, что липиды пищи могут оказывать существенное влияние на структуру и функцию мембран, меняя их жирно-кислотные спектры.
Для оценки биологического действия различных жиров на организм человека введено понятие коэффициента эффективности метаболизации жирных кислот (КЭМ). Он характеризует отношение количества арахидоновой кислоты к сумме всех других полиненасыщенных кислот с 20 и 22 углеродными атомами. Важно отметить, что КЭМ увеличивается параллельно уменьшению содержания арахидоновой кислоты. Перспектива возможного использования КЭМ в качестве диагностического теста для выявления нарушений липидного обмена у человека является вполне реальной и ценной.
Последние достижения науки, более глубоко раскрывающие функции жиров в организме человека, предопределили изменения норм их потребления с пищей. Так, по сравнению с прежними рекомендациями прослеживается тенденция к увеличению потребления жиров при неизменном или даже пониженном потреблении углеводов. При этом важное значение имеют количественная и качественная характеристики жиров. Последняя существенно зависит от технологии их производства и хранения.
Биологическая ценность углеводов определяется количественным составом усвояемых и неусвояемых углеводов. Важная роль отводится усвояемым углеводам, нормализующим обменные процессы в организме. В последние годы большое внимание уделяется пищевым волокнам — балластным веществам, относящимся к группе неусвояемых углеводов (пектиновые вещества, клетчатка, гемицеллюлоза).
Биологическая ценность витаминов определяется их участием в клеточном и тканевом обмене веществ, существенным влиянием на функциональное состояние многих физиологических систем, на реактивность организма и его защитные механизмы.
Биологическая ценность минеральных веществ определяется их абсолютным содержанием и соотношением между собой в продуктах и специфическим действием на обменные процессы.
Источник