Облучение: как справиться с последствиями для организма?
После масштабных техногенных катастроф 20-го века опасность ионизирующего излучения стала предметом страха для многих людей. Однако и в обычной жизни мы сталкиваемся с влиянием радиации. Последствия облучения зависят от многих факторов, и, если доза достаточно высока, они могут быть очень опасны. Впрочем, современная медицина знает, как минимизировать риск для здоровья. О способах реабилитации после облучения расскажем в этой статье.
Виды облучения, которым может подвергнуться организм
Ионизирующее излучение («радиация», как говорят в быту) в норме всегда окружает нас. Его источники есть в космосе и в земной коре. Промышленная деятельность изменила природный радиационный фон — «благодаря» работе атомных электростанций, ТЭЦ, заводов по переработке ядерных отходов излучение стало выше.
Нормальный, безопасный для здоровья радиационный фон составляет 0,1-0,2 мкЗв/ч (зиверт — современная единица измерения поступившей в организм радиации). Значения до 0,6 мкЗв/ч считаются допустимым облучением. Более высокие показатели радиации несут прямую угрозу здоровью людей — при условии, что они действуют постоянно, а не в разовой дозе. [1]
В повседневной жизни мы не можем полностью защититься от ионизирующего излучения. Оно сопровождает нас повсюду — при контакте со стройматериалами, из которых построены здания, в процессе пользования бытовым газом, во время авиаперелетов. Уровень облучения определяется разными условиями — регионом проживания, профессиональной деятельностью и другими. Например, в некоторых областях радиационный фон выше из-за того, что в земной коре находится большое количество радиоактивных веществ. Люди, живущие поблизости от атомных электростанций и прочих объектов ядерного комплекса, а особенно работающие на таких предприятиях, сильнее подвергаются облучению.
Помимо естественных источников радиации, есть еще и искусственные. Чаще всего мы сталкиваемся с ними во время медицинского вмешательства. Рентгеновские методы исследования считаются безопасными: пациент получает очень малую дозу радиации.
Гораздо более сильное облучение происходит во время лучевой терапии, которая применяется чаще всего при лечении злокачественных опухолей. Самая распространенная схема — регулярное локальное воздействие разовыми дозами в 200-250 рад (2-2,5 Зв) [2] . Ионизирующее излучение в таких масштабах разрушает опухолевые клетки, но затрагивает и расположенные рядом здоровые ткани. При соблюдении правил лучевой терапии эти негативные эффекты сводятся к минимуму.
В зависимости от того, где находится источник, различают два типа облучения:
- Внешнее , когда радиация действует на организм снаружи. Его природным источником служат, например, лучи из космоса. Внешнему облучению искусственного происхождения человек подвергается во время рентгенодиагностики и лучевой терапии;
- Внутреннее , когда излучение исходит из источника в самом организме. Радиоактивные вещества могут проникнуть через легкие с воздухом, через ЖКТ с пищей и водой, через поврежденную кожу. Их также используют при некоторых видах медицинских процедур (радиоизотопная диагностика). Попав в организм, радионуклиды продолжают действовать до момента полного распада или выведения.
Кроме того, виды облучения классифицируются по:
- типу ионизирующих частиц (-альфа, -бета, -гамма, рентгеновские и т. д.);
- продолжительности воздействия (острое — в течение минут или часов, пролонгированное — несколько дней или месяцев, хроническое — длящееся годами, но в малых дозах);
- площади поражения тела (местное, широкопольное, общее);
- смертельным последствиям, зависящим от дозы (сублетальное, летальное, сверхлетальное).
Состояние человека после облучения и возможные последствия для здоровья
При сильном кратковременном облучении или продолжительном воздействии не столь больших (но превышающих допустимые) доз радиации у людей формируется лучевая болезнь. Ее симптомы и отдаленные последствия разнообразны. Главное, от чего они зависят, — это доза облучения, полученная за определенный период времени. С этой позиции выделяют две формы болезни: острую и хроническую.
Острая лучевая болезнь
Это угрожающее жизни состояние возникает, когда организм в течение короткого времени подвергается равномерному воздействию внешнего ионизирующего излучения в дозе более 1 Зв. [3] Есть несколько форм болезни. Какая именно из них разовьется, зависит от степени облучения. Мы будем говорить только о костномозговой форме, которая возникает под действием дозы 1-6 Зв и, в свою очередь, подразделяется на несколько степеней:
- легкая — 1-2 Зв;
- среднетяжелая — 2-4 Зв;
- тяжелая — 4-6 Зв;
- сверхтяжелая — более 6 Зв.
Выделяют несколько стадий прогрессирования острой лучевой болезни. Начальный период, который длится до 5 дней от момента облучения, проявляется признаками интоксикации: рвотой, головной болью, слабостью, лихорадкой, покраснением кожи. Они выражены тем сильнее, чем тяжелее степень болезни.
Затем эти симптомы проходят, и наступает фаза затишья. Состояние после облучения на данном этапе удовлетворительное, что создает ложное впечатление о выздоровлении. Определить поражение костного мозга можно по анализам крови.
Далее болезнь вступает в фазу разгара. Симптоматика в этом периоде разнообразна. В крови больных отмечается уменьшение уровня лейкоцитов и тромбоцитов, развивается анемия. Присоединяются инфекции, возникают кровотечения, язвы на слизистой оболочке рта, атрофические изменения кожи, поражения желудочно-кишечного тракта, сердечно-сосудистой системы. Впоследствии может развиться радиационный гепатит.
Легкая и среднетяжелая формы болезни при адекватном и вовремя начатом лечении заканчиваются выздоровлением. Клетки костного мозга со временем восстанавливаются. Однако спустя месяцы или годы после облучения болезнь может напомнить о себе.
В результате воздействия радиации в дозах от 10 Зв и выше возникают другие формы острой лучевой болезни: кишечная, сосудистая, церебральная. Они во всех случаях приводят к летальному исходу, быстрота наступления которого зависит от степени облучения: от нескольких дней до нескольких часов или даже секунд. [4]
Хроническая лучевая болезнь
Ее причина — долгое непрерывное или часто повторяющееся воздействие сравнительно невысоких доз радиации (0,1-0,5 Зв в сутки) [5] . Заболевание развивается постепенно, процесс длится годы. В зависимости от общей дозы облучения различают степени тяжести: легкая и среднетяжелая — 1-5 Зв, тяжелая — свыше 5 Зв. Хроническая лучевая болезнь протекает в три стадии.
Стадия формирования заболевания , когда появляется и нарастает симптоматика. Чем тяжелее степень поражения, тем она ярче. При легкой форме изменения в крови незначительны, нарушения работы внутренних органов выражены неявно (чаще всего бывают расстройства ЖКТ). На первом плане — явления астении: головные боли, утомляемость, раздражительность, плохой сон.
Среднетяжелая форма болезни сопровождается отчетливыми симптомами. Больные жалуются на слабость, утомляемость, боли в костях. Часто возникают кровотечения, кровоизлияния в кожу. Заметны атрофические явления: кожа становится сухой, утрачивает эластичность, выпадают волосы, истончаются ногти. Нарушаются функции ЖКТ и печени. При исследовании крови выявляются анемия, уменьшение содержания лейкоцитов, тромбоцитов и другие признаки угнетения кроветворения.
При тяжелой форме все эти симптомы выражены еще резче. Развивается сильная анемия, возникают кровотечения, поражаются внутренние органы и ЦНС. Часты инфекционные осложнения.
Стадия восстановления . Легкая степень ХЛБ при прекращении облучения имеет благоприятный прогноз, заканчивается выздоровлением через 2 месяца. Среднетяжелая форма протекает годами, периодически обостряется, завершается частичной ремиссией. При тяжелой степени нередко бывает летальный исход (из-за инфекции или кровотечения).
Стадия отдаленных последствий . Перенесенная лучевая болезнь спустя годы может напомнить о себе развитием злокачественных опухолей, иммунных заболеваний, склероза сосудов, катаракты, нарушений работы органов пищеварения. Продолжительность жизни больных уменьшается. Отдаленные последствия облучения могут сказаться и на потомстве (генные мутации).
Терапия при лучевой болезни
Лечение после облучения ведется по нескольким направлениям. Его задачи сводятся к облегчению симптомов, нормализации психологического состояния больного, предупреждению осложнений.
Симптоматическая терапия острой лучевой болезни начинается после оказания первой помощи. Она включает купирование рвоты, нормализацию водного баланса, детоксикацию. Назначают сосудистые средства для предотвращения коллапса и шока.
При хронической лучевой болезни применяют физиотерапию, щадящую, но полноценную диету, лечебную физкультуру (при легкой форме), средства, поддерживающие работу ЦНС, витамины. При среднетяжелом течении добавляют стимуляторы кроветворения, гормональные препараты, антибиотики. Иногда приходится прибегать к переливанию крови, в тяжелых случаях — к трансплантации костного мозга.
Психотерапия играет большую роль в восстановлении после облучения, особенно в случае острой формы болезни. Люди часто оказываются под воздействием больших доз радиации в результате аварий, которые сами по себе являются психотравмирующим фактором.
Профилактика осложнений — как ближайших, так и отдаленных — имеет очень большое значение. Для повышения стойкости организма к воздействию радиации назначают растительные адаптогены (элеутерококк, женьшень, лимонник), комплексы витаминов и аминокислот, нуклеозиды. Чтобы предупредить инфекционные осложнения острого лучевого поражения, больного помещают в асептические условия, вводят антибиотики.
Особой чувствительностью к радиационному воздействию отличается пищеварительная система. Нарушениями ЖКТ часто осложняются острая и хроническая формы лучевой болезни. Для поддержки работы органов пищеварения используется ферментная терапия.
С излучением мы сталкиваемся повсюду, но иногда его дозы оказываются выше допустимых. Особенно подвержены риску работники предприятий ядерного комплекса и ТЭК, люди, проживающие вблизи таких объектов, а также сотрудники медицинских и научно-исследовательских учреждений, которые вынуждены взаимодействовать с источниками радиации. При сильном или продолжительном облучении возникает лучевая болезнь, исход которой во многом зависит от своевременно начатой терапии.
Источник
Нормы радиации в помещении
Радиоактивное излучение окружает нас повсюду, в какой-то мере его имеют все предметы и даже сам человек. Представляет опасность не сама радиация, а когда её значение превысит некоторые значения. Одно дело, если человек подвергся радиации кратковременно и совсем другое, когда она воздействует длительное время, например, проживает в заражённой квартире. Забегая вперёд скажем, что для человека безопасная норма радиации определена в пределах 30 микрорентген в час (мкР/ч). Существуют ещё несколько единиц измерения. Другие нормы и единицы её измерения обсудим ниже.
Что такое радиоактивность
Что такое радиация
Радиация — это вид излучения заряженными частицами. Такое излучение, воздействуя на окружающие предметы, ионизирует вещество. В случае с человеком она не только ионизирует клетки, но и разрушает их или вызывает раковые заболевания.
Большинство элементов таблицы Менделеева инертны и безвредны, но некоторая часть имеет нестабильное состояние. Не вдаваясь в подробности описать её, можно так. Атомы некоторых веществ из-за непрочных внутренних связей распадаются. Это распад сопровождается выбросом альфа, бета-частиц и гамма-излучением.
Такой выброс сопровождается высвобождением энергии с различной проникающей способностью и оказывающем разное воздействие на ткани организма.
Виды радиации
Существует несколько видов радиоактивности, которые можно разделить на неопасные, малоопасные и опасные. Подробно останавливаться на них не будем скорее это для понимания с, чем можно столкнуться в помещении. Итак, это:
- альфа (α) излучение;
- бета (β) излучение;
- гамма (γ) излучение;
- нейтронное;
- рентгеновское.
Альфа-излучение, бета и нейтронное представляют собой облучение частицами. Гамма и рентгеновское — это электромагнитное излучение.
В быту вам вряд ли предстоит встретиться с рентгеновским и нейтронным, так как они специфичны, а вот с остальными можно. Каждое из этих видов излучений имеет разную степень опасности, но, кроме этого, должно учитываться, какое количество облучения получил человек.
В чём измеряется радиация
Единиц измерения радиации несколько, но в основном на пользовательском уровне предпочитается рентген, ассоциативно связанный с ней. На таблице ниже они приведены. Рассматривать подробно их не будем, так как при необходимости узнать радиоактивный фон в квартире будут нужны, пожалуй, только 2.
Виды радиации
- Зиверт – эквивалентная доза. 1 Зв = 100 Р = 100 БЭР = 1 Гр.
- Рентен — внесистемная единица — Кл/кг. 1 Р = 1 БЭР = 0,01 Зв.
- БЭР – аналог Зиверт, устаревшая внесистемная единица. 1 БЭР = 1 Р = 0,01 Зв.
- Грей – мощность поглощённой дозы – Дж/кг. 1 Гр = 100 Рад.
- Рад – доза поглощённой радиации Дж/кг. 1 рад – это 0,01 (1 рад = 0,01 Гр).
На практике больше в ходу системная единица Зиверт (Зв), мЗв – миллизиверт, мкЗв – микрозиверт, названная в честь учёного Рольфа Зиверта. Зиверт единица измерения эквивалентной дозы, выражается в количестве энергии полученной на килограмм массы Дж/кг.
Выражение радиации в Рентгенах также используется хоть и менее широко. Однако конвертировать рентгены в зиверты не составит труда.
1 Рентген равен 0,0098 Зв, но обычно значение в зиверт округляют до 0,01, что упрощает перевод. Так как это очень большие дозы в реальности пользуются гораздо меньшими значениями м – милли 10 -3 и мк – микро 10 -6 . Отсюда 100 мкР = 1 мкЗв, или 50 мкР = 0,5 мкЗв. То есть используется множитель 100. Когда нужно перевести микрозиверты в микрорентгены нужно какое-то значение умножить на сто, а если нужно перевести рентгены в зиверты, то необходимо поделить.
Уровень радиации которую может получить человека на процедурах и жизни
Надзор и нормативные документы
Надзор в этой сфере осуществляет Роспотребнадзор специальными службами. Контроль за состоянием радиоактивного загрязнения окружающей природной среды осуществляется Федеральной службой России по гидрометеорологии и мониторингу окружающей среды, а за уровнем радиационной безопасности населения — органами Министерства здравоохранения РФ.
В России дозы радиации для человека устанавливает СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности НРБ-99/2009» и ОСПОРБ-99. По ним предельно допустимая доза радиации для человека составляет не более 5 мЗв или 0,5 БЭР, или 0,5 Р в год.
Нормы для человека
За длительные годы исследования радиации были определены безопасные и максимальные дозы. К сожалению, не только опытным путём, но и на практике. Такие события, как Хиросима и Чернобыль не прошли даром для планеты. Годы наблюдений за излучением показали, что превышение допустимой дозы радиации оставляет отпечаток на всех последующих поколениях.
Физические величины в которых измеряется радиация
Радиационный фон
С момента зарождения земли прошло 4,5 миллиарда лет, за это время радиоактивность, которая во время её формирования была просто гигантской, сошла почти на нет. Существующий естественный фон, который в нашей стране составляет 4–15 мкР в час, складывается из нескольких составляющих. Это:
- Природный, до 83%. Остаточная радиация от природных источников — газов, минералов.
- Космическое излучение — 14%. Мощнейшим источником излучения является солнце. При уменьшении магнитного поля земли общий фон увеличится, что может привести к увеличению раковых заболеваний и мутаций. Второй фактор, снижающий излучение – это атмосфера. Летающие на самолётах и альпинисты получают повышенную дозу.
- Техногенное – от 3 до 13%. С первого атомного взрыва прошло 75 лет. За время испытаний атомного оружия в атмосферу было выброшено огромное количество радиоактивных веществ. Кроме этого, техногенные аварии — Чернобыль, Фукусима. Добыча и транспортировка таких веществ, а также работающие АЭС. Всё вносит вклад в общий фон.
Доза радиации которую получает человек в течении года
Норма радиационного фона является значение до 0,20 мкЗв/час или 20 мкР/час. Допустимый фон считается уровень до 60 мкР/час или 0,6 мЗв. Для каждой страны он устанавливается свой, например, в Бразилии безопасный радиоактивный фон составляет 100 мкР в час.
Безопасная доза
Безопасной дозой радиации для человека является уровень, при котором можно жить и работать без последствий для организма. Этот уровень определён до 30 мкР/ч (0,3 мкЗв/час).
Допустимая доза
Допустимая доза радиации несколько больше безопасной и показывает уровень, при котором на организм оказывается воздействие радиации, но без негативных последствий для здоровья.
Допустимый уровень в год предполагает до 1 мЗв. Если это значение поделить на часы, то получим 0,57 мкЗв/ч.
Эта доза применяется и для расчёта среднего значения полученного излучения за несколько лет. Например, человек за 5 лет подряд должен получить 5 мЗв, но работая на вредном производстве, получил годовую в 3 мЗв. Следующие 4 года он не должен получить более 1 мЗв, чтобы выровнять значения и уменьшить риск заработать лучевую болезнь.
При полётах на высоте выше 10 км уровень излучения будет до 3 мкЗв/ч, что превышает норму в 10 раз. Получается, что за 4 часа можно получить максимальную, суммарную дозу до 12 мкЗв.
Излучение которое можно полечить в полёте
Смертельный уровень облучения
Опасной дозой можно принять уровень в 0,75 Зв. При таком значении происходит изменение в крови человека и хоть не бывает смертельных исходов сразу, но в будущем вероятность раковых заболеваний довольно высока.
Как уже было замечено выше органы (печень, лёгкие, желудок, кожа) неравномерно воспринимают излучение. Лучевая болезнь начинается с дозы в 1–2 Зиверт и для некоторых это уже смертельная доза. Другие с лёгкостью перенесут заражение и выздоровеют.
Если исходить из статистики, то смертельной будет доза выше 7 Зиверт или 700 рентген.
Доза. Зиверт | Воздействие на человека |
1–2 | Лёгкая форма лучевой болезни. |
2–3 | Лучевая болезнь. Смертность в течение первого месяца до 35%. |
3–6 | Смертность до 60%. |
6–10 | Летальный исход 100% в течение года. |
10–80 | Кома, смерть через полчаса |
80 и более | Мгновенная смерть |
Измерение радиации в квартире
Уровень радиации в помещении не должен превышать 0,25 мкЗв/час. Безопасным считаются помещение, в которых содержание радона не более 100 Бк на кубометр. При этом в производственных помещениях он может составлять до 300 Бк и 0,6 микроЗиверт.
Если нормы превышены, то принимаются меры к их снижению. При невозможности это сделать жильцы должны быть переселены, а помещение перепрофилировано в нежилое или идти под снос.
В СанПиН указано содержание тория, урана и калия-40 используемых на строительстве для возведения жилья. Общая доза от стеновых и отделочных материалов не должна быть выше 370 Бк/кг.
Материалы с повышенной радиоактивностью
При строительстве в советское время все материалы проходили проверку по ГОСТ. Поэтому разговоры о том что «хрущёвские» пятиэтажки имеют радиоактивность, не более чем миф. Основным источником радиации в квартире или любом другом помещении является газ радон.
Он относится к естественным источникам радиации, так как присутствует в земной коре и выделяется в окружающую среду, внося свою долю в общий радиационный фон. Проникая в помещение через фундамент и полы, он накапливается , увеличивая нормальный радиоактивный фон. Поэтому не стоит делать помещения слишком герметичными. Дополнительным источником поступления радона в дом является вода поступающая из артезианских скважин и газ.
Средняя радиоактивность некоторых строительных материалов
Основные строительные материалы: бетон, кирпич и дерево не представляют опасности и являются самыми безвредными. Однако в строительстве и в быте мы используем материалы, выделяющие довольно большое количество радона. К ним относятся:
Все материалы залегающие или добытые из земной коры могут иметь повышенный уровень радиации. Поэтому неплохо контролировать её самостоятельно.
Чем проверить наличие радиации
Проверить уровень радиации может возникнуть при покупке новой квартиры, квартиры в неблагополучном районе или использовании подозрительных материалов на строительстве дома. У человека нет органов чувств способных почувствовать радиацию и оценить опасность. Поэтому для её обнаружения необходимо наличие специализированных приборов — дозиметров.
Бытовые дозиметры для измерения радиации
Они могут быть бытовыми, профессиональными, промышленными или военными. В качестве чувствительного элемента могут использоваться различные датчики: газоразрядные, сцинтилляционные кристаллы, слюдяные счётчики Гейгера-Мюллера, термолюминесцентные лампы, пин-диоды.
Для замеров в домашних условиях нам доступны бытовые дозиметры. В зависимости от прибора он может выводить показания на дисплей в мкЗв/ч или мкР/ч. Некоторые приборы более близкие к профессиональным могут показывать в обоих вариантах. Следует учитывать, что бытовые дозиметры имеют довольно высокий уровень погрешности измерений.
Источник