Препараты для повышения работоспособности
Для поддержания работоспособности и ускорения процессов восстановления после больших нагрузок, при остром и хроническом утомлении, переутомлении, болезненном состоянии в современном спорте применяются различные фармакологические средства.
Особое внимание уделяется фармакологическим препаратам растительного происхождения. В каждом конкретном случае врач решают вопрос об использовании тех или иных восстанавливающих средств.
Специфические вещества с противогипоксическими свойствами должны удовлетворять трем основным требованиям:
- Повышать резистентность организма к острой гипоксии, в том числе предельной;
- Не изменять существенно деятельность ЦНС,
сердечнососудистой и других систем; - Не снижать физическую и умственную работоспособность организма при обычном обеспечении его кислородом и способствовать ее сохранению в условиях гипоксии.
Этим требованиям отвечают многие вещества: цитохром-с, глютаминовая, аскорбиновая, аспарагиновая, фолиевая, пантотеновая кислоты, гутимин и др. Эти препараты оказывают положительное действие на организм при развитии кислородной недостаточности. Под их влиянием улучшается общее самочувствие, снижается интенсивность симптомов гипоксии, повышается физическая работоспособность.
Бемитил — способствует ускорению восстановления и повышению работоспособности. Применяется по 0,25 г в течение 2-3 недель или по 0,5 г в течение 10 дней.
Глютаминовая кислота (глютамат натрия) — стимулирует окислительные процессы. Принимают по 1-2
таблетки после тренировок или соревнований.
Гутимин — увеличивает интенсивность гликолиза, экономит расходование во время физических нагрузок гликогена, ограничивает накопление избыточного лактата. Принимают по 1-2 таблетки после тренировок, по 2-3 таблетки за 1-1,5 ч до соревнований.
Цитамак (цитохром-с) — переносчик электронов, действует при гипоксии. Вводят внутримышечно по 1 ампуле после тренировок как средство восстановления, особенно при высоком лактате, а также перед стартом в видах спорта циклического характера. Нередко дает аллергическую реакцию!
Препараты, влияющие на энергетические и метаболические процессы.
Цернилтон — содержит микроэлементы и витамины, обладает общеукрепляющим эффектом, повышает
устойчивость организма к инфекциям и воспалениям. Показания: частые рецидивы простудных заболеваний,
воспалительные процессы (бронхиты, простатиты, уретриты, и др.). Применяется как профилактическое средство, а также при смене временного пояса. Доза: по 2-4 таблетки в день.
Пикамилон — представляет собой производное никотиновой и у-аминомасляной кислот. Снимает психоэмоциональную возбудимость, чувство усталости, повышает уверенность в себе, улучшает настроение, создает впечатление «ясной головы», вызывает желание тренироваться, обладает антистрессорным действием, купирует предстартовый стресс, ускоряет процессы восстановления, улучшает сон. Доза: по 1-2 таблетки 2 раза в день.
Аспаркам — содержит калий аспарагинат. магний аспарагинат. Устраняет электролитный дисбаланс в
организме, способствует проникновению ионов калия и магния во внутриклеточное пространство, обладает
противоарит-мическим свойством, понижая возбудимость миокарда. Применяется для профилактики
переутомления (перенапряжения), при сгонке веса, при тренировке в жарком климате. Доза: по 1-2
таблетки 3 раза в день.
Янтарная кислота — улучшает обменные процессы. Доза: по 1-2 таблетки после тренировочного занятия.
Сафинор — применяется в период интенсивных нагрузок, при утомлении, изменениях в ЭКГ. Доза: по 1
таблетке 3 раза в день (курс 10-15 дней).
Карнитин хлорид — анаболическое средство негормональной природы. Способствует улучшению аппетита, увеличению массы тела, нормализации основного обмена. Показания: заболевания и состояния,
сопровождающиеся понижением аппетита, уменьшением массы тела, физическое истощение, травматическая
энцефалопатия. Доза: 1-2 чайные ложки 2-3 раза в день.
Кобамамид — является природной коферментной формой витамина Bia, определяющей его активность в
различных метаболических процессах; необходим для многих ферментных реакций, обеспечивающих
жизнедеятельность организма, играет большую роль в усвоении и биосинтезе белка, обмене аминокислот,
углеводов и ли-пидов, а также целом ряде других процессов.
Показания: анемия, заболевания периферической нервной системы, астенические состояния и др. Доза: по 1 таблетке 3-4 раза в день. Часто кобамамид применяют вместе с карнитином, запивая кипяченой водой с холосасом (или раствором
шиповника с витамином С).
Бенфотиамин — по фармакологическим свойствам близок к тиамину и кокарбоксилазе. Показания: гиповитаминоз группы В, астеноневротический синдром, вегетососудистая дистония, заболевания печени, изменения на ЭКГ (нарушение реполяризации и др.). Доза: по 1 таблетке 3 раза в день после еды.
Фосфаден — применяется при перенапряжении сердца. Доза: до 100 мг в сутки в течение 7-10 дней в сочетании с рибоксином. При передозировке нередко возникает «забитость» мышц. В этом случае надо уменьшить дозу, сделать гипертермическую ванну и массаж на ночь.
Компламин — усиливает кровоток в капиллярах, в результате чего улучшается снабжение тканей
кислородом; ускоряет окислительные процессы в тканях. Показания: травматические повреждения мозга (сотрясение, ушибы), мигрени, «забитость» мышц, аноксии тканей. Доза: 1 драже 2-3 раза в день.
Пантокрин — жидкий спиртовой экстракт из пантов марала, изюбра и пятнистого оленя. Применяется в качестве тонизирующего средства при переутомлении, неврастении, астенических состояниях, слабости сердечной мышцы, гипотонии. Доза: по 30-40 капель до еды 2-3 раза в день или подкожно 1 мл в день (курс 10-12 дней). При повышенном АД пантокрин применять нельзя.
Рибоксин (инозие-ф) — принимает непосредственное участие в обмене глюкозы, активизирует энзимы пировиноградной кислоты, что обеспечивает нормальный процесс дыхания; усиливает эффект действия оротата калия, особенно при тренировке на выносливость. Показания: острое и хроническое перенапряжение сердца, возможность возникновения болевого печеночного синдрома, нарушение сердечного ритма, интенсивные тренировки и т. д. Доза: по 1 таблетке 4-6 раз в день, в зависимости от вида спорта и веса спортсмена (курс 10-20 дней).
Аденозинтрифосфорная кислота — образуется при реакциях окисления и в процессе гликолити-ческого расщепления углеводов. Особенно важное значение имеет для сократительной деятельности скелетных и сердечной мышц. Под влияниемАТФ усиливается коронарное и мозговое кровообращение. Доза: внутримышечно по 1 мл 1-процентного раствора ежедневно (курс 20 инъекций).
Калия оротат — оказывает антидистрофическое действие, поэтому может назначаться с профилактической целью при больших физических нагрузках. Показания: острое и хроническое перенапряжение сердца, болевой печеночный синдром, заболевания печени и желчных путей, нарушения сердечного ритма. Доза: 0,5 г 2-3 раза в день. При длительном применении отмечаются аллергические реакции.
Кокарбоксилаза — участвует в регулировании углеводного обмена, уменьшает ацидоз, нормализует ритм сердечных сокращений. Показания: перенапряжение миокарда после больших физических нагрузок, нарушения сердечного ритма, недостаточность коронарного кровообращения. Доза: внутримышечно по 0,05-0,1 г ежедневно (обычно вместе с АТФ), при перенапряжении сердца — 0,1-1 г. Курс — 10-15 дней.
Панангин — действие его основано на способности проводить ионы калия и магния внутриклеточно и тем самым устранять их дефицит. Применяется при нарушениях ритма сердца, синдроме перенапряжения миокарда. Доза: по 1 драже 2-3 раза в день (курс 10-15 дней).
Глютаминовая кислота — участвует в реакциях обмена (переаминирования), в окислительных процессах в клетках мозга, повышает устойчивость организма к гипоксии, оказывает благоприятное действие на восстановительные процессы при физических нагрузках, улучшает работу сердца. Показания: большие физические и психические нагрузки. Доза: по 1 таблетке 2-3 раза в день после еды (курс 10-15 дней).
Аминалон (гаммалон) — принимает участие в обменных процессах головного мозга. Показания:
перенесенные черепно-мозговые травмы, головные боли, бессонница, головокружение, связанные с повышенным АД. Доза: по 1-2 таблетки 3-4 раза в день. Курс при травмах 200—300 таблеток. С целью восстановления работоспособности доза уменьшается до 2-3 таблеток в день (курс 10-15 дней).
Кальция глицерофосфат — влияет на обмен веществ, усиливая аналобические процессы. Показания: интенсивные тренировочные нагрузки, перетренированность, восстановление после больших физических нагрузок, переутомление, истощение нервной системы. Доза: по 0,1-0,3 г 2-3 раза в день (часто в сочетании с препаратами железа).
Ферроплекс — включает аскорбиновую кислоту, сульфат железа. Показания: интенсивные тренировки, анемии и др. Доза: по 2 драже 3 раза в день после еды.
Липоцеребрин — содержит фосфорно-липидные вещества, извлеченные из мозговой ткани крупного рогатого скота. Применяется во время интенсивной тренировки и соревнований, при перетренировке, переутомлении, упадке сил, малокровии, гипотонии. Доза: по 1 таблетке 3 раза в день (курс 10-5 дней).
Фосфрен — применяется при переутомлении, малокровии, неврастении, во время тренировок в горах. Доза: по 1-2 таблетки 2 раза в день (курс 2 недели).
Фитин — содержит фосфор и смесь кальциевых и магниевых солей различных инозитфосфорных кислот, 36% органически связанной фосфорной кислоты. Применяется во время интенсивных тренировок и соревнований, при перетренировке, функциональных расстройствах нервной системы, сосудистой гипотонии.
Источник
Витамины для бодрости: как правильно принимать и их суточная норма
В статье мы расскажем:
- Причины хронической усталости
- Витамины и минералы для бодрости
- Витамины и минералы в продуктах. Природные источники энергии
Витамины и минералы играют важную роль, обеспечивая нормальное течение основных метаболических путей в человеческом организме. Они принимают активное участие в механизмах энергообразования, поддерживая тем самым функционирование клеток и тканей. Необходимы и для транспорта кислорода, а также для регуляции деятельности нейронов центральной нервной системы, что имеет критически важное значение в контексте когнитивных процессов, а также умственной и физической усталости.
Причины хронической усталости
Усталость, языком биохимии, — это недостаток энергии. Иными словами, это следствие не удовлетворения текущих потребностей организма — прежде всего мозга и мышц. Сравните сами в состоянии покоя суточные энергозатраты составляют:
для сердца и почек — примерно 440 ккал/кг — именно эти два органа являются лидерами по потреблению энергоресурсов;
для мозга — 240 ккал/кг;
для печени — 200 ккал/кг;
для мышц — 13 ккал/кг.
Итак возникает закономерный вопрос: каким же образом удается сердечной мышце наравне с центральной нервной системой выбиться с последних мест в победители? Связан этот, на первый взгляд парадокс, с наиболее внушающей (по сравнению с их “конкурентами”) массой: так, для взрослого человека вес мышц составляет около 26.3 кг, а мозга — примерно 1.33 кг, что делает их наиболее метаболически активными даже при условии отсутствия физической нагрузки.
Вполне закономерно, что с увеличением нагрузки потребность в энергии для мышц существенно увеличивается. Однако и в этом таится удивительная закономерность или, правильнее даже сказать, прекрасное следствие всей гениальность человеческого тела: несмотря на потенциально значимые и большие колебания запросов в энергоресурсах, доступная энергия в мышцах в глобальном масштабе остается постоянной — это демонстрация поражающей и точной регуляции скорости генерации энергии в соответствии с текущими потребностями органа.
В частности, на этом основана одна из наиболее популярных гипотез, объясняющих причину мышечной слабости: ограничение энергоснабжения. Так, скажем, по результатам недавних исследований, подобная патология возникает при нарушении метаболизма в особо чувствительных к усталости волокнах, имеющих, к тому же, высокую скорость сокращения — наблюдается уменьшение производительности.
Вернемся же к нервной системе. На мозг среднестатистического взрослого человека обычно припадает около 2% от общей массы тела. Столь маленькие размеры несопоставимы с потребностью этого органа в энергии — и это существенно отличие человека от позвоночных животных, не принадлежащих к приматам. Так, скажем, последние выделяют всего от 2 до 8% своего основного обмена на нужды нервной системы, в то время как у людей эти цифры в несколько раз выше. Ученые предполагают, что это связано с большим количеством нейронов, которыми нас наделила природа. Столь высокое потребление ими глюкозы, основного энергетического субстрата, обеспечивает явление нейротрансмиссии — осуществление передачи между двумя нервными клетками химических сигналов посредством специфических биологически активных веществ — нейромедиаторов.
Есть еще одно большое отличие между скелетными мышцами и головным мозгом: первые обладают существенным запасом глюкозы — их кладовые предусмотрительно заполнены тяжелыми длинными цепями гликогена, который они, в отличие от печени, с жадностью тратят сугубо на свои потребности, не желая делиться с другими органами и тканями. В тоже время, резервы центральной нервной системы весьма скудны — именно поэтому функционирование нервных клеток во многом зависит от энергетических субстратов, поступающих из крови.
И здесь тоже не все так просто: органическим веществам, в первую очередь, необходимо преодолеть своеобразный паспортный контроль на границе сосудов и нервной ткани — гематоэнцефалический барьер. Например, существенные размеры жирных кислот, связанных с крупными молекулами белков, попросту неспособны преодолеть мелкоячеистую структуру отделяющих их от нейронов границы.
В физиологических условиях основным топливом для мозга является глюкоза, но при снижении ее концентрации подключаются второстепенные механизмы. Такими альтернативными субстратами становятся среднецепочечные триглицериды, молочная кислота и образуемые клетками печени кетоновые тела.
Еще один факт, который невозможно не учитывать, — постоянная активность головного мозга. То есть, если скелетные мышцы при отсутствии физической нагрузки могут позволить себе “отдохнуть”, то центральная нервная система работает всегда — это генератор постоянного действия, осуществляющий контроль за всеми функциями организма и на всех уровнях его существования.
Исследователи с твердой уверенностью подчеркивают: даже во время сна отмечается электрохимическая активность нейронов, поэтому умственная работа добавляет менее 5% к базовой активности клеток ЦНС.
Витамины и минералы для бодрости
Центральная нервная система, как и мышечная ткань, сильно зависят от газового состава крови, во многом определяемого концентрацией эритроцитов и степени их насыщения гемоглобином. Так, скажем, мозг потребляет порядка 3.5 мл кислорода на 100 г ткани в минуту — и это составляет около 20% от общей потребности всего организма! Таким образом, хроническая гипоксия неизменно вытекает в нейрональную дисфункцию и нарушение интеллектуальной деятельности как таковой.
В состоянии покоя запросы мышечной ткани куда более скромные: всего 1 мл кислорода на 100 г ткани — и это за 60 секунд! Впрочем, стоит подвергнуть их нагрузке, как потребность в этом газе многократно возрастает, увеличиваясь практически до 50 раз. Итак, анемия сказывается не только на умственной работе, но и на физической, обуславливая ощущения усталости и утомления.
Занятия спортом не рекомендуются пациентам, находящимся в состоянии железодефицита — в том числе и латентного. Как правило, при активной нагрузке, кислород и без того не успевает поступать к мышечным волокнам — и когда резервные запасы (поддерживаемые распадом миоглобина) израсходуются, запускается анаэробный путь получения энергии. Образуется молочная кислота, накопление которой ассоциируется с так называемой “крепатурой”.
В дальнейшем лактат покидает мышечные волокна и направляется в системный кровоток, откуда и попадает в печень — центральную фабрику метаболизма. Здесь молочная кислота преобразуется в глюкозу и возвращается обратно в скелетные мышцы.
Впрочем, при избыточном поступлении в кровь лактата (продукция которого отмечается при недостаточной “подачи” кислорода и в других органах), нарушается один из незыблемых факторов гомеостаза — кислотно-щелочное равновесие. В организме развивается ацидоз.
Кроме того, следует учитывать, что железо не только входит в состав гемоглобина, но и является компонентом специфических колец многочисленных гемовых ферментов — в частности, цитохромов, задействованных в процессах энергообразования и в детоксикационных реакциях, протекающих в печени.
Витамины группы В
Все водорастворимые витамины, за исключением фолиевой кислоты, принимают участие в различных этапах процесса энергообразования, что наиболее ярко демонстрирует ниже приведенная картинка.
Недостаточное поступление любого из витаминов В сказывается в виде нарушения функционирования отточенной системы производства энергии, замедления скорости протекания соответствующих биохимических реакций, обуславливая серьезные последствия для всего организма.
Так, скажем, именно активные формы тиамина (В1) препятствуют накоплению молочной кислоты, способствуя превращению пировиноградной кислоты, продукт которого ( ацетил-КоА) включается в цикл Кребса. В тоже время без рибофлавина (В2) невозможно представить не только нормальное протекание цикла лимонной кислоты, но и заключительный этап энергообразования в митохондриях — перенос протонов и электронов по дыхательной цепи, встроенной во внутреннюю мембрану наших маленьких электростанций.
Метаболически активные производные витамина В6 задействованы в синтезе гема — небелковой составляющей молекулы гемоглобина. Кроме того, они принимают участие в трансформации глюкозы, во многом опосредуя осуществление таких процессов ее получения, как распад гликогена (гликогенолиз) и глюконеогенез, а также задействованы в синтезе витамина В3 из аминокислоты триптофан.
Биотин или витамин В8 обеспечивает синтез жирных кислот и регулирует их доступность для дальнейшего “сгорания” в печках митохондрий, а также вовлекается в распад аминокислот с разветвленными цепями, что вносит немалую лепту в общие механизмы производства энергии.
Аскорбиновая кислота задействована в процессе образования гормонов надпочечников, выброс которых активирует пути образования и получения энергии (небезызвестная реакция “беи или беги”).
Кроме того, она необходима для синтеза специфического переносчика жирных кислот, осуществляющего их перенос из цитоплазмы в место сжигания — митохондрии. Таким образом, именно дефицит витамина С, прямым следствием которого является снижение продукции транспортера-карнитина, является одним из факторов мышечной слабости и миалгии.
Магнию досталась одна из ключевых ролей в производстве энергии и использовании ее. Дело в том, что функциональная форма АТФ образуется лишь при связывании этого макроэргического соединения с ионами магния и образования соответствующих комплексов.
Кроме того, этот элемент оказывает регуляторное воздействие и на некоторые ферменты цикла Кребса, а также осуществляет доставку АТФ из митохондрий, места его непосредственной продукции, в цитозоль клетки.
Магний не является частью антиоксидантной системы — основной линии защиты нашего организма от свободных радикалов. Однако многочисленные исследования показали удивительную взаимосвязь между дефицитом этого минерала и развитием оксидативного стресса. Предполагается, что в основе этого кроется воспаление, предрасполагающее нейтрофилы и другие клетки иммунной системы продуцировать активные формы кислорода, что приводят к повреждению и дисфункции эндотелия, которая, кстати, до сих пор считается главенствующей в контексте патогенеза атеросклероза.
Цинк — еще один элемент, необходимый для профилактики и предотвращения развития в организме окислительного стресса. Он участвует в регуляции некоторых ферментов, индуцируя их активность и обуславливая, тем самым, улавливание свободных форм кислорода, способных повредить вне- и внутриклеточные структуры, приводя, в конечном счете, к гибели клетки.
Интересно, что цинк модулирует активность и основного провоспалительного сигнального пути, таким образом опосредованно влияя на экспрессию многих генов, задействованных в осуществлении иммунного ответа.
В некоторых “цинксодержащих” нейронах этот элемент регулирует передачу химических сигналов — иными словами, контролирует нейротрансмиссию. Впрочем, увеличение его концентрации в структурах головного мозга обусловливает гибель нервных клеток за счет оказываемой им нейротоксичности.
Источник