Альфа-излучение: проникающая способность. Защита от альфа-излучения
Что собой представляет альфа-излучение? Чем оно стало для человечества — другом, помощником или врагом? Какой от него вред и как защититься от альфа-излучения?
Основные источники альфа-излучения
Усовершенствовав методику изучения радиационного влияния, англичанин Резерфорд выяснил, что отклонение альфа-излучения фиксируется также в электрическом поле. Было замечено, что лучи больше тяготеют к отрицательному полюсу.
Так было установлено, что альфа-облучение относится к категории положительных частиц. Их параметры идентичны показателям гелиевых ядер. У обычного атома этого элемента в составе содержится всего пара электронов. В научной среде такие лучи носят название α-излучение.
Разобравшись с тем, что такое альфа-излучение, ученые начали искать его первоисточники. Схематически их можно разделить на две равноценные категории:
Всего существует четыре основных источника излучения разного происхождения:
- Испускание ядер гелия. Происходит ядерный распад тяжелых элементов вроде радия, либо тория.
- Межзвездный газ. Возникает из-за ускорения гелиевых ядер из космического пространства, которые стремятся преодолеть земное тяготение.
- Научные эксперименты. Опыты, которые проводятся специалистами в условиях радиоизотопных лабораторий, должны включать в себя ускорители заряженных частиц. Все вместе это генерирует нужное облучение.
- Промышленность. Подразумевает под собой различные объекты урановой индустрии и ядерные реакторы.
Виды излучения
Существуют такие типы радиационного излучения:
- Альфа. Состоит из массивных, положительно заряженных ядер атомов гелия. Возникает при распаде сложных химических элементов, например тория или урана. При контакте с веществом начинается взаимодействие, при котором частицы теряют большую часть энергии. Из-за небольшой проникающей способности излучение задерживается простым листом бумаги. Альфа-лучи разрушают клетки живого организма, вызывая опасные последствия.
- Бета. Образуется на стадии превращения одного атома в другой. Скорость частиц приближена к световой, что придает им высокую проникающую способность. Показатель ионизации ниже, чем у альфа-лучей. Бета-радиация не задерживается одеждой и кожей человека. При прохождении через металлический лист часть энергии теряется. Бета-излучение наносит вред организму, находящемуся на расстоянии 100 м от источника.
- Нейтронное. Возникает в атомных реакторах или после взрыва ядерной бомбы. Такая радиация исходит от звезд, где протекают бурные термоядерные реакции. При взаимодействии с веществом практически не изменяет структуру атомов, однако проникающая способность считается высокой. Нейтронная радиация задерживается водой или полиэтиленом. Излучение также может нанести вред животным, человеку и растениям.
- Гамма. Состоит из фотонов, образуется при распаде атомов радиоактивного вещества. Частицы перемещаются со скоростью света. Высокая проникающая способность позволяет преодолевать металлические или бетонные препятствия. Гамма-частицы слабо взаимодействуют с веществом. Главная опасность заключается в способности перемещаться на большие расстояния.
- Рентгеновское. Состоит из фотонов и возникает при перемещении электрона с одной орбиты атома на другую. Способность к проникновению в ткани ниже, чем у гамма-частиц. Объясняется это большей длиной волны.
Особенности α-лучей в разных средах
Кроме необходимости знать, что такое альфа-излучение для защиты себя от его влияния, нужно разбираться в его особенностях.
Стартовая скорость таких частиц варьируется в рамках 14-20 тысяч км/с. По сравнению с бета-частицами они считаются более массивными. Разница составляет более 7300 раз. Из-за этого ионизирующая способность лучей считается высокой.
Среднестатистический показатель создания пара ионов тут составляет 200000 раз. Для этого должны быть соблюдены основные условия: свободное движение в воздухе, температура окружающей среды в 15 градусов и обычное атмосферное давление.
Но срок «жизнеспособности» этих частиц довольно ограничен. Вызвано это тем, что при ионизации требуются многочисленные энергетические затраты. После того как частицы начинают последовательно тормозить, их способность к ионизации значительно возрастает.
Свободный пробег частиц из альфа-гаммы по воздуху составляет не более 11 см при благоприятной среде. А вот жидкая и твердая среды не благоприятны для проникновения лучей. Здесь они не могут продвинуться даже на миллиметр.
Проникающая способность[ | ]
Тяжёлые заряженные частицы взаимодействуют в основном с атомными электронами и поэтому мало отклоняются от направления своего первоначального движения. Вследствие этого пробег тяжёлой частицы R
измеряют расстоянием по прямой от источника частиц до точки их остановки. Обычно пробег измеряется в единицах длины (м, см, мкм), а также поверхностной плотности материала (или, что равнозначно, длины пробега, умноженной на плотность) (г/см2). Выражение пробега в единицах длины имеет смысл для фиксированной плотности среды (например, часто в качестве среды выбирается сухой воздух при нормальных условиях). Физический смысл пробега в терминах поверхностной плотности — масса единицы площади слоя, достаточного для остановки частицы.
Длина пробега α-частицы в зависимости от её энергии и среды
Среда | Энергия α-частиц, МэВ | |||
4 | 6 | 8 | 10 | |
Длина пробега α-частицы, мм | ||||
Воздух при нормальных условиях | 25 | 46 | 74 | 106 |
Биологическая ткань | 0,031 | 0,056 | 0,096 | 0,130 |
Алюминий | 0,016 | 0,030 | 0,048 | 0,069 |
Сферы использования альфа-излучения
Многие люди напуганы мифами касательно поражающей способности альфа-излучения, путая его с опасными рентгенологическими лучами.
После тщательного изучения особенностей альфа-частиц, ученые разработали отдельное направление терапии. Оно включает в себя дозированное воздействие на организм человека для достижения узкого круга результатов во благо улучшения здоровья.
Главными «действующими лицами» в подобных процедурах выступают изотопы вроде радона и торона. Они имеют строго ограниченный срок жизнедеятельности, из-за чего выводятся из организма естественным путем оперативно.
С их помощью медики проводят следующий спектр процедур:
- ванны с привлечением радона;
- употребление радоновой воды вовнутрь;
- аппликации и орошения на основе радона;
- ингаляции с радоновым компонентом.
Согласно некоторым исследованиям, альфа-лучи считается более эффективным и безопасным решением для больных, нежели более разрекламированное бета-облучение. Объясняется это тем, что альфа-частицы могут направляться сфокусировано на строго определенный участок. Это гарантирует возможность уничтожить опасные болезнетворные клетки точечно.
Этот метод был взят на вооружение ведущими мировыми онкологами при лечении раковых опухолей. Он пользуется спросом и из-за того, что позволяет снизить число нужных для полного курса лечения процедур по сравнению с бета-облучением.
Главными действиями, которыми обладает альфа-терапия, называют:
- противовоспалительное,
- обезболивающее,
- успокаивающее.
Благодаря всему вышеперечисленному терапию стали задействовать при лечении заболеваний из области гинекологии и сердечно-сосудистых проблем. Передовые технологии позволяют прибегать к помощи альфа-частиц при лечении опорно-двигательного аппарата.
Но перед тем как включить представленную терапию в перечень медицинских процедур, прошедших одобрение, ученые годами исследовали влияние альфа-лучей. В ходе экспериментов они научились вычислять предельно допустимые дозировки для человека, оптимальные механизмы воздействия. Также исследователи создали целый ряд методов защиты от «прирученной» радиации.
Область применения
Применение альфа-частиц в мирных целях практикуется давно.
Свойства лучей позволяет использовать их в таких сферах медицины:
- Физиотерапия. Ванны и аппликации с радоном способствуют улучшению общего состояния организма. Торон и радон, являющиеся слаборадиоактивными изотопами, быстро распадаются и выводятся, не поражая ткани.
- Онкология. Альфа-частицы перемещаются, не отклоняясь, что позволяет им воздействовать только на опухоль. При точечном облучении требуется меньшее количество процедур. Вероятность появления побочных эффектов в этом случае минимальна. Терапия избавляет от болевых ощущений и признаков воспаления, возникающих при распространении раковых клеток.
- Гинекология и кардиология. Альфа-терапия используется в лечении инфекционно-воспалительных процессов. При проведении терапии нужно правильно рассчитывать допустимые дозы и принимать во внимание возможность возникновения побочных эффектов.
Взаимодействие альфа-излучения с веществом.
Способы защиты
Результаты многочисленных исследований говорят о том, что внешнее воздействие этой разновидности излучения неопасно. Но, оказавшись в организме вместе с питательными продуктами, жидкостью или через поврежденный эпидермис, частицы могут стать причиной существенной интоксикацией. Мощная ионизация, наличие кислорода и водорода в составе лучей могут привести к опасным патологическим изменениям и сбоям.
Чтобы обезопасить себя, нужно просто отдалиться от источника излучения на 20−40 сантиметров. Как правило, этой меры предосторожности более чем достаточно.
Если говорить о внутреннем облучении, то здесь меры безопасности необходимо усилить. Человек, который находится в районе массового поражения, обязательно должен иметь при себе следующие защитные средства:
- обувь и одежда из плотных тканей: перчатки, нарукавники, комбинезоны с удобными капюшонами, специальные туфли,
- щиток и шлем, сделанные из оргстекла,
- противогаз,
- излучение способно проникнуть через открытые раны и поврежденный кожный покров, потому уязвимые поверхности нужно защитить специальными кремами, эмульсиями или пастами.
Помимо этого, для выведения продуктов распада излучения из организма следует потреблять рыбу, бобовые, капусту, цитрусовые и иные продукты, содержащие витамины С и В. Также быстрому выведению радиоактивных нуклидов способствует употребление в пищу топинамбура.
Примечательно, что незначительная проникающая способность альфа-частиц не дает возможности выявить радиацию с помощью обыкновенных дозиметров. Для этой цели применяют счетчик Гейгера, который сообщает об опасности соответствующим пощелкиванием.
Допустимые пределы облучения
Норма ионизирующего излучения в России регулируется «Нормами радиационной безопасности» и «Основными санитарными правилами работы с радиоактивными веществами и другими источниками ионизирующих излучений». Согласно данным документам, пределы облучения разработаны для следующих категорий:
1. «А». К ней относятся сотрудники, которые работают с источником излучений на постоянной основе или временно. Допустимый предел рассчитывается как индивидуальная эквивалентная доза внешнего и внутреннего излучения за год. Это так называемая предельно допустимая доза.
2. «Б». Категория включает часть населения, которая может подвергаться воздействию источников облучения, так как проживает или работает рядом с ними. В этом случае также рассчитывается допустимая доза за год, при которой в течение 70 лет не будут происходить нарушения здоровья.
3. «В». К типу относится население области, края или страны, попавшее под излучение. Ограничение облучения происходит с помощью введения норм и контроля радиоактивности объектов в окружающей среде, вредных выбросов с АЭС, учитывая дозовые пределы для предыдущих категорий. Влияние излучений на население не подлежит регламенту, так как уровни облучения очень низки. В случаях радиационной аварии в регионах применяются все необходимые меры безопасности.
Влияние бета-излучения на человека
Как же эти представители микромира влияют на человеческий организм? Если бета-излучение попадает на кожу человека, то происходит ожёг тканей. Степень повреждения при этом зависит от длительности облучения, его интенсивности и структуры ткани. Особенно страдают открытые участки тела и слизистые оболочки глаз.
После аварии на Чернобыльской АЭС в радиусе более 100 метров у людей, ступавших на землю босыми ногами, наблюдались тяжёлые ожоги стоп. Но особо тяжкие последствия имеют место при попадании вещества, испускающих эти крохотные, но далеко не безобидные частички внутрь организма. При этом происходит ионизация молекул, гибель клеток, выделение токсинов, ведущих к отравлению организма и в итоге — к летальному исходу. Опасность бета-излучения весьма велика! Каждая бета-частица со средним значением энергии, может образовать на своём пути в воздухе около 30 000 пар ионов. То есть весь её путь среди живых тканей усеян остатками молекул, являющихся источниками разрушительных процессов в организме.
В сфере обитания человека радиоактивность до определённой нормы является таким же естественным компонентом, как скажем, кислород. Безопасной нормой бета-облучения считается 0.20 мкЗв/час. Если же радиационный фон превысил эту норму в 2 раза, то находиться в этой зоне без последствий вы можете лишь полчаса.
Скорость распада изотопа (период полураспада)
Каждый радионуклид распадается со своей уникальной скоростью, которая не может быть изменена никаким химическим или физическим процессом. Полезным показателем этой скорости является период полураспада радионуклида.
Период полураспада определяется как время, необходимое для снижения активности какого-либо конкретного радионуклида до половины его первоначального значения. Другими словами, половина атомов вернулась в более стабильное состояние материала.
Периоды полураспада радионуклидов варьируются от микросекунд до миллиардов лет.
Период полураспада двух широко используемых промышленных изотопов составляет 74 дня для иридия-192 и 5,3 года для кобальта-60. Более точные вычисления могут быть сделаны для периода полураспада этих материалов, однако, эти времена обычно используются.
Обратите внимание, что углерод-14 не используется в радиографии, но является одним из многих полезных радиоактивных изотопов, используемых для определения возраста окаменелостей.
Источник