Меню

Активирование жирных кислот витамин

Все ли мы знаем о лечебных возможностях антиоксидантов?

*Импакт фактор за 2018 г. по данным РИНЦ

Читайте в новом номере

ММА им. И.М. Сеченова

Врачебное искусство во многом определяется умением правильно управлять процессами, естественно протекающими в организме. В последние годы растет интерес к лечебным возможностям тиоктовой кислоты – незаменимому компонету внутриклеточного метаболизма, открытому еще в 50-е годы XX века.

Тиоктовая кислота является коферментом, входящим в состав энзимов группы кокарбоксилаз, участвующих в углеводном и жировом обмене. Она обнаруживается в различных органах, в наибольших количествах – в печени, почках и сердце.

Точные сведения о механизмах биосинтеза тиоктовой кислоты у человека, животных и растений отсутствуют. Экзогенная тиоктовая кислота поступает в организм в основном с мясной пищей. В организме тиоктовая кислота образует динамичную окислительно-восстановительную систему, которая участвует в переносе ацильных групп в составе многокомпонентных ферментных систем. Основное значение имеет ее участие в качестве кофактора в окислительном декарбоксилировании альфа-кетокислот (пировиноградной и кетоглутаровой), протекающем в матриксе митохондрий. Следовательно, тиоктовая кислота играет значительную роль в процессе образования энергии в организме.

Тиоктовая кислота облегчает превращение молочной кислоты в пировиноградную с последующим ее декарбоксилированием, т.е. способствует ликвидации метаболического ацидоза.

Следует также отметить положительное липотропное действие тиоктовой кислоты. Способствуя образованию коэнзима А (КоА), она облегчает перенос ацетата и жирных кислот из цитозоля в матрикс митохондрий для последующего окисления. Это сопровождается уменьшением выраженности жировой дистрофии гепатоцитов, активизацией метаболической функции печени и желчеотделения, нередко этому сопутствует и снижение содержания липидов в плазме крови.

Кроме того, тиоктовая кислота оказывает липотропное действие, ускоряет окисление жирных кислот. Однако “второе рождение” тиоктовой кислоты для медицинской практики в большей мере связано, пожалуй, с развитием представлений об “окислительном стрессе” и перекисном окислении липидов (ПОЛ) как о достаточно универсальном патогенетическом механизме повреждения клеток и тканей. Антиоксидантный эффект тиоктовой кислоты обусловлен наличием двух тиоловых групп в молекуле (отсюда приставка “тио”), а также способностью связывать молекулы радикалов и свободное тканевое железо (предотвращая его участие в ПОЛ).

Получены доказательства того, что тиоктовая кислота не только обладает самостоятельным антиоксидантным потенциалом, но и обеспечивает мощную поддержку работы других антиоксидантных звеньев в организме. В этом отношении ее протективное действие тесно связано с гомеостазом в системе глутатиона и убихинона.

Выработка активных форм кислорода – ординарное явление в процессе клеточного дыхания, однако она значительно возрастает при воспалении, иммунологических расстройствах, гипоксии, гипероксии, воздействии лекарств, излучений, дефиците антиоксидантов. Гиперпродукция свободных радикалов сопровождается повреждением макромолекул (ДНК, белков и липидов, антиоксидантов). К внутриклеточным защитным молекулам относятся ферменты (супероксиддисмутаза, каталаза, глутатионпероксидаза), металлосвязывающие белки (хелатирующие так называемые “металлы Fenton”– медь и железо, которые катализируют ПОЛ), молекулы-”уборщики” (эндогенные: глутатион, убихиноны, мочевая кислота; поступающие исключительно или в большей мере с пищей — аскорбиновая кислота и токоферол, тиоктовая кислота, селен, рибофлавин, цинк, каротиноиды). Обмен различных антиоксидантов тесно взаимосвязан.

Сегодня широко применяются препараты универсального компонента клеточного дыхания и антиоксиданта Q-энзима (убихинона). Однако физиологическое равновесие в системе Q-энзима во многом обеспечивается участием тиоктовой кислоты. Принимая на себя два электрона убихинона и превращаясь в дигидролипоевую кислоту, тиоктовая кислота поддерживает коэнзим Q в “рабочем состоянии”. Принимая один электрон, он ликвидирует потенциальный источник образования свободных радикалов кислорода и запуска ПОЛ биологических мембран. Исследователи рекомендуют применение коэнзима Q в комбинации с тиоктовой кислотой.

Предполагается, что процесс старения во многом обусловлен возрастанием степени окислительного повреждения клеточных структур и активных центров ферментов, что сопровождается уменьшением их сродства к субстратам. Снижается активность клеточного дыхания. Назначение тиоктовой кислоты (Тиоктацида) и карнитина способствует восстановлению функции митохондрий и уменьшению накопления прооксидантов.

Показания к применению

Тиоктовая кислота относится к разряду адаптогенов, позволяющих минимизировать системные эффекты стресса, такие, например, как снижение функциональной активности естественных киллеров, а также уменьшение секреции иммуноглобулина A, сопровождающееся нарушением состава микрофлоры кишечника.

При окислительном стрессе на фоне “истощающей” физической нагрузки в эксперименте на животных продемонстрировано снижение активности глутатион S-трансферазы в миокарде. Данный нежелательный эффект, последствием которого является повреждение миокардиоцитов в результате ПОЛ, предотвращался благодаря предварительному введению тиоктовой кислоты в дозе 150 мг/кг per os в течение 8 нед.

Рекомендуется назначение тиоктовой кислоты (совместно с другими антиоксидантами) в терапии врожденных форм гемолитических анемий (серповидно-клеточной, талассемии, анемии на фоне врожденной недостаточности глюкозо-6-фосфатдегидрогеназы), поскольку при этих состояниях повышена активность прооксидантного звена.

Тиоктовая кислота оказывает прямое стимулирующее действие на активность уропорфириноген-декарбоксилазы, что может быть использовано в лечении порфирий.

Важное место в клинической практике в настоящее время занимает использование тиоктовой кислоты в лечении больных сахарным диабетом. Эффекты липоевой кислоты при этом заболевании многогранны.

Экспериментально показано, что причиной снижения на 50–70% скорости инсулинзависимого трансмембранного переноса глюкозы при сахарном диабете является окислительный стресс. Тиоктовая кислота в этих условиях оказывала защитное действие, повышая транспорт глюкозы до уровня 84–8% от нормального. Подобного эффекта не давали аскорбиновая кислота и токоферол. Кроме того, при биохимических исследованиях установлено, что тиоктовая кислота оказывает на трансмембранный транспорт глюкозы действие, сходное с действием инсулина, активизируя на определенных этапах сигнальный каскад этого гормона. Таким образом, назначение тиоктовой кислоты целесообразно при инсулинрезистентных формах сахарного диабета.

Показано, что применение тиоктовой кислоты способствует накоплению гликогена в печени.

Назначение больным сахарным диабетом тиоктовой кислоты уменьшает степень выраженности повышения содержания лактата и пирувата в сыворотке крови, развивающегося на фоне гипергликемических состояний.

На фоне сахарного диабета нередко развивается импотенция в результате нарушение релаксации гладкомышечных волокон, опосредуемой эндогенным оксидом азота. В основе лежит активация ПОЛ. Назначение тиоктовой кислоты позволяет предотвратить развитие или частично коррегировать данное расстройство.

Антиоксидантная активность тиоктовой кислоты (Тиоктацида) используется во многих областях медицины (см. табл.).

Повреждения мозга различного происхождения сопровождаются гиперпродукцией реактивных видов кислорода и как следствие – повышением уровня внеклеточного глутамата, что приводит к высвобождению лактатдегидрогеназы из клеток в интерстиций и развитию цитолиза. Травматическое повреждение мозга сопровождается генерализованным окислительным стрессом. Тиоктовая кислота, обладая свойствами антиоксиданта, оказывает протективное действие (рекомендуется применение в сочетании с селеном).

Активно участвуя в метаболических процессах, тиоктовая кислота способна оказывать детоксицирующее действие. В частности, тиоктовая кислота выполняет роль антидота при отравлении солями ртути, акриламидом. Она способствует восстановлению активности ферментов нервных клеток, принимающих участие в метаболизме глюкозы, и уменьшает интенсивность ПОЛ.

При отравлении свинцом, как установлено, ведущим механизмом повреждения является окислительный стресс, поэтому при данной патологии важную лечебную роль выполняют антиоксиданты. Выявлена способность тиоктовой кислоты в условиях свинцовой интоксикации восстанавливать внутриклеточный запас тиолов путем наращивания содержания восстановленного глутатиона, снижения уровня малонового диальдегида (МДА).

Тиоктовая кислота может способствовать устранению побочных эффектов ряда лекарственных препаратов. В частности, назначение цисплатина, гентамицина, амикацина сопровождается активизацией ПОЛ, снижением запасов глутатиона в клетках улитки внутреннего уха, нарастанием уровня МДА. Показано, что назначение антиоксидантов, и в частности, тиоктовой кислоты (100 мг/кг в день) уменьшает выраженность ототоксического воздействия.

В последние годы интенсивно изучается роль оксида азота (NO) в патогенезе сосудистых и реологических нарушений. Было показано, что тиоктовая кислота подавляет синтез NO гепатоцитами под воздействием цитокинов и липополисахаридов, что наблюдается, например, при септическом шоке. Этот эффект связывают с улучшением усвоения углеводов, и он не сопровождается цитотоксическим действием. Другие же антиоксиданты, содержащие тиольные группы, такие как глутатион или N-ацетилцистеин, напротив, усиливают выработку NO.

Следует остановиться на гепатопротекторных свойствах тиоктовой кислоты. Доказана прямая связь между количеством депонированного в печени железа и темпами прогрессирования хронического вирусного гепатита. Также, по-видимому, существует прямая корреляция этого показателя с риском развития гепатоцеллюлярной карценомы. Железо активирует реакции ПОЛ.

Исследователи сообщают об опыте применения “тройной” антиоксидантной схемы (тиоктовой кислоты, силимарин, селен) в лечении поражения печени вирусом гепатита С. Это достаточно дешевый и безопасный способ приостановить прогрессирование поражения печени (в частности, фиброза) и предупредить развитие рака печени, стеатоз печени и стеатогепатит.

Читайте также:  Витамин состав сера кальций

Рекомендуется применение препарата при гиперлипидемиях, в частности, назначение в целях профилактики детям в семьях, члены которых страдают ранним атеросклерозом.

Спектр заболеваний и состояний, при которых показано назначение тиоктовой кислоты, приведен в таблице. Обращает на себя внимание многоплановость эффектов, что обусловлено важнейшими функциями препарата по поддержанию гомеостаза в клетке.

Режим дозирования и побочные эффекты

Тиоктовую кислоту (Тиоктацид) назначают внутрь после еды или внутривенно, дозировка зависит от особенностей заболевания (обычно 400–600 мг/сут). Нежелательные эффекты при применении препарата, как правило, отсутствуют; в редких случаях отмечаются аллергические реакции, диспепсические расстройства, проходящие при снижении дозы или отмене препарата.

Список литературы находится на нашем сайте: www.rmj.ru

Тиоктацид (торговое название)

1. Клиническая фармакология/ Под ред. В.Г. Кукеса. М.: Издательство Московской медицинской академии, 1991; 444.

2. Шерлок Ш., Дули Дж. Заболевания печени и желчных путей: Практическое руководство: Пер. с англ. / Под. ред. З.Г. Апросиной, Н.А. Мухина. М.: Гэотар Медицина, 1999; 864.

3. Harrison’s Principles of Internal Medicine. Fourteenth Edition // Copyright (c) 1998 by The McGraw-Hill Companies, Inc., USA.

4. Textbook for therapeutics: drug and disease managment/Еditors: Eric T. Herfindal, Dick R. Gourley. — 6 th ed. Copyright (c) 1996 Williams & Wilkins, Baltimore, USA.

5. Liang JF, Akaike T. Inhibition of nitric oxide synthesis in primary cultured mouse hepatocytes by alpha-lipoic acid. Chem Biol Interact 2000 Jan 3;124(1): 53–60.

6. Ramrath S, Tritschler HJ, Eckel J. Stimulation of cardiac glucose transport by thioctic acid and insulin. // Horm Metab Res 1999 Dec;31(12): 632–5.

7. Arivazhagan P, Juliet P, Panneerselvam C. EFFECT OF DL alpha LIPOIC ACID ON THE STATUS OF LIPID PEROXIDATION AND ANTIOXIDANTS IN AGED RATS. Pharmacol Res 2000 Mar; 41(3): 299–303.

8. Gurer H, Ozgunes H, Oztezcan S, Ercal N. Antioxidant role of alpha-lipoic acid in lead toxicity. Free Radic Biol Med 1999 Jul; 27(1–2): 75–81.

9. Jacob S, Ruus P, Hermann R, et al. Oral administration of RAC-alpha-lipoic acid modulates insulin sensitivity in patients with type-2 diabetes mellitus: a placebo-controlled pilot trial. Free Radic Biol Med 1999 Aug ;27(3–4): 309–14.

10. Kelly GS. Nutritional and botanical interventions to assist with the adaptation to stress. Altern Med Rev 1999 Aug; 4(4): 249–65.

11. Ziegler D, Hanefeld M, Ruhnau KJ, et al. Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a 7-month multicenter randomized controlled trial (ALADIN III Study). ALADIN III Study Group. Alpha-Lipoic Acid in Diabetic Neuropathy. Diabetes Care 1999 Aug;22(8):1296-301

12. Kishi Y, Schmelzer JD, Yao JK, et al. Alpha-lipoic acid: effect on glucose uptake, sorbitol pathway, and energy metabolism in experimental diabetic neuropathy. Diabetes 1999 Oct; 48(10): 2045–51.

13. Anuradha B, Varalakshmi P. Activities of glucose-metabolizing enzymes in experimental neurotoxic models with lipoate as an alleviator. J Appl Toxicol 1999 Nov-Dec;19(6): 405–9.

Источник

ЖИРНЫЕ КИСЛОТЫ

ЖИРНЫЕ КИСЛОТЫ — алифатические карбоновые кислоты, многие из которых входят в состав животных и растительных жиров; в организме животных и в растениях свободные Жирные кислоты и Жирные кислоты, входящие в состав липидов, выполняют чрезвычайно важную функцию — энергетическую и пластическую. Ненасыщенные Жирные кислоты участвуют в организме человека и животных в биосинтезе особой группы биологически активных веществ — простагландинов (см.). Содержание свободных и эфирносвязанных Жирных кислот в сыворотке крови служит дополнительным диагностическим тестом при ряде заболеваний. Ж. к. широко используются для приготовления различных мыл, в производстве каучука и резиновых изделий, лаков, эмалей и олиф.

В зависимости от числа карбоксильных групп в молекуле различают одно-, двух- и многоосновные Ж. к., а по степени насыщенности углеводородного радикала — насыщенные (предельные) и ненасыщенные (непредельные) Ж. к. По числу углеродных атомов в цепи Ж. к. делятся на низшие (c1—C3), средние (C4—C9) и высшие (C10—C26)- Насыщенные Ж. к. имеют общую молекулярную формулу CnH2nO2. Общая формула ненасыщенных Ж. к. зависит от числа содержащихся в них двойных или тройных связей.

Для обозначения Ж. к. используют рациональную и систематическую номенклатуру; кроме того, многие Ж. к. имеют исторически сложившиеся названия. По рациональной номенклатуре все Ж. к. рассматривают как производные уксусной к-ты, в молекуле к-рой атом водорода метильной группы замещен углеводородным радикалом. По систематической номенклатуре название Ж. к. происходит от названия углеводорода, молекула к-рого построена из того же числа атомов углерода, включая углерод карбоксильной группы, что и молекула Ж. к. (напр., пропан — пропановая к-та, этан — этановая к-та, гексан — гексановая к-та и т. д.). В названии ненасыщенных Ж. к. указывается число двойных связей (моно-, ди-, три-и т. д.) и прибавляется окончание «еновая». Нумерация атомов углерода Ж. к. начинается с углерода карбоксильной (COOH—) группы и обозначается араб, цифрами. Ближайший к COOH-группе C-атом обозначается как альфа, соседний с ним — бета и концевой атом углерода в углеводородном радикале — омега. Двойную связь в молекуле Ж. к. обозначают символом Δ или просто приводят номер углеродного атома, у к-рого расположена двойная связь с указанием цис- или транс-конфигурации цепи. Некоторые наиболее распространенные Ж. к. и их тривиальные, рациональные и систематические названия приведены в таблице 1.

Содержание

Физические свойства

Низшие Ж. к. представляют собой летучие жидкости с резким запахом, средние — масла с неприятным прогорклым запахом, высшие — твердые кристаллические вещества, практически лишенные запаха.

С водой смешиваются во всех отношениях только муравьиная кислота (см.), уксусная кислота (см.) и пропионовая к-та; у более высоких членов ряда Ж. к. растворимость быстро уменьшается и, наконец, становится равной нулю. В спирте и эфире Ж. к. растворимы хорошо.

Температуры плавления в гомологическом ряду Ж. к. возрастают, но неравномерно. Ж. к. с четным числом C-атомов плавятся при более высокой температуре, чем следующие за ними Ж. к., имеющие на один C-атом больше (табл. 2). В обоих этих рядах (с четным и нечетным числом C-атомов) разность температур плавления двух следующих друг за другом членов постепенно уменьшается.

Такое своеобразное различие между Ж. к. с четным и нечетным числом С-атомов в молекуле проявляется не только в температурах плавления, но в нек-рой степени в хим. и даже в их биол, свойствах. Так, Ж. к. с четным числом C-атомов распадаются, по данным Г. Эмбдена, при кровоизлиянии в печени до ацетона, а Ж. к. с нечетным числом C-атомов — не распадаются.

Ж. к. сильно ассоциированы и даже при температурах, превышающих их температуру кипения, показывают вдвое больший мол. вес, чем это следует из их формулы. Эта ассоциация объясняется возникновением водородных связей между отдельными молекулами Ж. к.

Химические свойства

Химические свойства Ж. к. определяются свойствами их COOH-групп и углеводородного радикала. В COOH-группе связь O—H ослаблена за счет смещения электронной плотности в двойной C=O связи к кислороду, и поэтому протон может быть легко отщеплен. Это приводит к появлению стабильного аниона к-ты:

Сродство карбонилового остатка к электронам может быть частично удовлетворено за счет соседней метиленовой группы, водородные атомы к-рой наиболее активны по сравнению с остальными. Константа диссоциации COOH-группы Ж. к. равна 10 -4 —10 -5 М, т. е. ее величина гораздо ниже, чем у неорганических к-т. Наиболее сильной из Ж. к. является муравьиная к-та. COOH-группа Ж. к. обладает способностью реагировать в водных р-рах с щелочноземельными металлами. Соли высших Ж. к. с этими металлами называются мылами (см.). Мыла обладают свойствами поверхностно-активных веществ — детергентов (см.). Натриевые мыла твердые, калиевые — жидкие. Гидроксил COOH-групп Ж. к. может быть легко замещен на галоген с образованием галогенангидридов, которые широко используются в органических синтезах. При замещении галогена остатком другой к-ты образуются ангидриды Ж. к., при замещении остатком спирта — их сложные эфиры, аммиаком — амиды, гидразином — гидразиды. Наиболее распространены в природе сложные эфиры трехосновного спирта глицерина и высших Ж. к. — жиры (см.). Водород альфа-углеродного атома Ж. к. может быть легко замещен галогеном с образованием галогенсодержащих Ж. к. Непредельные Ж. к. могут существовать в виде цис- и транс-изомеров. Большинство природных ненасыщенных Ж. к. имеют цис-конфигурацию (см. Изомерия). Степень ненасыщенности Ж. к. определяют йодометрическим титрованием двойных связей. Процесс превращения ненасыщенных Ж. к. в насыщенные получил название гидрогенизации, обратный процесс— дегидрогенизации (см. Гидрогенизация).

Читайте также:  Витамины которые нельзя беременным

Природные Ж. к. получают путем гидролиза жиров (их омыления) с последующей дробной перегонкой или хроматографическим разделением освободившихся Ж. к. Неприродные Ж. к. получают путем окисления углеводородов; реакция протекает через стадию образования гидроперекисей и кетонов.

Окисление жирных кислот

Как энергетический материал Ж. к. используются в процессе бета-окисления. В 1904 г. Ф. Кнооп выдвинул гипотезу, объясняющую механизм окисления Ж. к. в животном организме.

Эта гипотеза была построена на основании установления природы конечных продуктов обмена, выделяемых с мочой, после введения животным co-фенил замещенных Ж. к. В опытах Ф. Кноопа введение животным фенильных замещенных Ж. к., содержащих четное число С-атомов, всегда сопровождалось выделением с мочой фенил уксусной к-ты, а содержащих нечетное число С-атомов — выделением бензойной к-ты. На основании этих данных Ф. Кнооп предположил, что окисление молекулы Ж. к. происходит путем последовательного отсечения от нее двууглеродных фрагментов со стороны карбоксильной группы (схема 1):

Гипотеза Ф. Кноопа, получившая название теории бета-окисления, является основой современных представлений о механизме окисления Ж. к. В развитии этих представлений важную роль сыграли следующие методы и открытия: 1) введение радиоактивной метки ( 14 C) в молекулу Ж. к. для изучения их обмена; 2) установление Муньо (Munoz) и Лелуаром (L. F. Leloir) факта, что для окисления Ж. к. клеточными гомогенатами требуются те же самые кофакторы, что и для окисления пирувата (неорганический фосфат, ионы Mg 2+ , цитохром с, АТФ и какой-либо субстрат цикла Трикарбоновых к-т — сукцинат, фумарат и т. п.); 3) установление факта, что окисление Ж. к., как и субстратов цикла Трикарбоновых к-т (см. Трикарбоновых кислот цикл), протекает только в митохондриях клетки [Ленинджер (A. L. Lehninger) и Кеннеди (Е. P. Kennedy)]; 4) установление роли карнитина в транспорте Ж. к. из цитоплазмы в митохондрии; 5) открытие Ф. Липманном и Ф. Линеном кофермента А; 6) выделение из животных тканей в очищенном виде мультиферментного комплекса, ответственного за окисление Ж. к.

Процесс окисления Ж. к. в общих чертах складывается из следующих этапов.

Активация. Свободная Ж. к. независимо от длины углеводородной цепи является метаболически инертной и не может подвергаться тем или иным превращениям, в т. ч. окислению, пока она не будет активирована.

Активация Ж. к. протекает в цитоплазме клетки, при участии АТФ, восстановленного КоА (KoA-SH) и ионов Mg 2+ .

Реакция катализируется ферментом тиокиназой:

В результате этой реакции образуется ацил-КоА, являющийся активной формой Ж. к. Выделено и изучено несколько тиокиназ. Одна из них катализирует активацию Ж. к. с углеводородной цепью длиной от C2 до C3, другая — от C4 до С12, третья — от C10 до C22.

Транспорт внутрь митохондрий. Коэнзимная форма Ж. к., так же как и свободные Ж. к., не обладает способностью проникать внутрь митохондрий, где собственно и протекает их окисление.

Установлено, что перенос активной формы Ж. к. в митохондрии осуществляется при участии азотистого основания карнитина. Соединяясь с Ж. к. при помощи фермента ацилкарнитиновой трансферазы, карнитин образует ацилкарнитин, обладающий способностью проникать внутрь митохондриальной мембраны.

В случае пальмитиновой к-ты, напр., образование пальмитил-карнитина представляется следующим образом:

Внутри митохондриальной мембраны при участии КоА и митохондриальной пальмитил-карнитиновой трансферазы происходит обратная реакция — расщепление пальмитил-карнитина; при этом карнитин возвращается в цитоплазму клетки, а активная форма пальмитиновой к-ты пальмитил-КоА переходит внутрь митохондрий.

Первая ступень окисления. Внутри митохондрий при участии дегидрогеназ Ж. к. (ФАД-содержащих ферментов) начинается окисление активной формы Ж. к. в соответствии с теорией бета-окисления.

При этом ацил-КоА теряет два водородных атома в альфа- и бета-положении, превращаясь в ненасыщенный ацил-КоА:

Гидратация. Ненасыщенный ацил-КоА присоединяет молекулу воды при участии фермента еноил-гидратазы, в результате чего образуется бета-гидроксиацил-КоА:

Вторая ступень окисления. Вторая ступень окисления Ж. к., так же как первая, протекает путем дегидрирования, но в этом случае реакцию катализируют НАД-содержащие дегидрогеназы. Окисление происходит по месту бета-углеродного атома с образованием в этом положении кетогруппы:

Тиолиз. Завершающим этапом одного полного цикла окисления является расщепление бета-кетоацил-КоА путем тиолиза (а не гидролиза, как предполагал Ф. Кнооп). Реакция протекает при участии КоА и фермента тиолазы. Образуется укороченный на два углеродных атома ацил-КоА и освобождается одна молекула уксусной к-ты в виде ацетил-КоА:

Ацетил-КоА подвергается окислению в цикле Трикарбоновых к-т до CO2 и H2O, а ацил-КоА снова проходит весь путь бета-окисления, и так продолжается до тех пор, пока распад все укорачивающегося на два углеродных атома ацил-КоА не приведет к образованию последней частицы ацетил-КоА (схема 2).

При бета-окислении, напр, пальмитиновой к-ты, повторяются 7 циклов окисления. Поэтому общий итог ее окисления может быть представлен формулой:

C15H31COOH + АТФ + 8KoA-SH + 7HАД + 7ФАД + 7H2O -> 8CH3CO—SKoA + АМФ + 7НАД-H2 + 7ФАД-H2 + пирофосфат

Последующее окисление 7 молекул НАД-H2 дает образование 21 молекулы АТФ, окисление 7 молекул ФАД-H2 — 14 молекул АТФ и окисление 8 молекул ацетил-КоА в цикле Трикарбоновых кислот — 96 молекул АТФ. С учетом одной молекулы АТФ, потраченной в самом начале на активацию пальмитиновой к-ты, общий энергетический выход при полном окислении одной молекулы пальмитиновой к-ты в условиях животного организма составит 130 молекул АТФ (при полном окислении молекулы глюкозы образуется лишь 38 молекул АТФ). Т. к. изменение свободной энергии при полном сгорании одной молекулы пальмитиновой к-ты составляет — 2338 ккал, а богатая энергией фосфатная связь АТФ характеризуется величиной 8 ккал, нетрудно подсчитать, что примерно 48% всей потенциальной энергии пальмитиновой к-ты при ее окислении в организме используется для ресинтеза АТФ, а оставшаяся часть, по-видимому, теряется в виде тепла.

Небольшое количество Ж. к. подвергается в организме омега-окислению (окислению по месту метильной группы) и альфа-окислению (по месту второго C-атома). В первом случае образуется дикарбоновая к-та, во втором — укороченная на один углеродный атом Ж. к. Оба вида окисления протекают в микросомах клетки.

Синтез жирных кислот

Поскольку любая из реакций окисления Ж. к. является сама по себе обратимой, было выдвинуто предположение, что биосинтез Ж. к. представляет собой процесс, обратный их окислению. Так считалось до 1958 г., пока не было установлено, что в экстрактах печени голубя синтез Ж. к. из ацетата мог протекать только в присутствии АТФ и бикарбоната. Бикарбонат оказался абсолютно необходимым компонентом, хотя сам он в молекулу Ж. к. не включался.

Благодаря исследованиям Уокила (S. F. Wakil), Ф. Линена и Вагелоса (Р. В. Vagelos) в 60—70-х гг. 20 в. было установлено, что фактической единицей биосинтеза Ж. к. является не ацетил-КоА, а малонил-КоА. Последний образуется при карбоксилировании ацетил-КоА:

Именно для карбоксилирования ацетил-КоА и требовались бикарбонат, АТФ, а также ионы Mg2+. Фермент, катализирующий эту реакцию, ацетил-КоА — карбоксилаза содержит в качестве простетической группы биотин (см.). Авидин, ингибитор биотина, угнетает эту реакцию, как и синтез Ж. к. в целом.

Суммарно синтез Ж. к., напр, пальмитиновой, при участии малонил-КоА может быть представлен следующим уравнением:

Как следует из этого уравнения, для образования молекулы пальмитиновой к-ты требуется 7 молекул малонил-КоА и только одна молекула ацетил-КоА.

Процесс синтеза Ж. к. детально изучен у Е. coli и некоторых других микроорганизмов. Ферментная система, именуемая синтетазой жирных кислот, состоит у Е. coli из 7 индивидуальных ферментов, связанных с так наз. ацилпереносящим белком (АПБ). АП Б выделен в чистом виде, и его первичная структура изучена. Мол. вес этого белка равен 9750. В его составе имеется фосфорилированный пантетеин со свободной SH-группой. АП Б не обладает ферментативной активностью. Его функция связана только с переносом ацильных радикалов. Последовательность реакций синтеза Ж. к. у Е. coli может быть представлена в следующем виде:

Читайте также:  Витамины витрум для детей подростков

Далее цикл реакций повторяется, бета-кетокапронил-S-АПБ при участии НАДФ-H2 восстанавливается в бета-гидроксикапронил-S-АПБ, последний подвергается дегидратации с образованием ненасыщенного гексенил-S-АПБ, который затем восстанавливается в насыщенный капронил-S-АПБ, имеющий углеродную цепь на два атома длиннее, чем бутирил-S-АПБ, и т. д.

Т. о., последовательность и характер реакций в синтезе Ж. к., начиная с образования бета-кетоацил-S-АПБ и кончая завершением одного цикла удлинения цепи на два C-атома, являются обратными реакциями окисления Ж. к. Однако пути синтеза и окисления Ж. к. не пересекаются даже частично.

В тканях животных не удалось обнаружить АПБ. Из печени выделен мультиферментный комплекс, содержащий все ферменты, необходимые для синтеза Ж. к. Ферменты этого комплекса настолько прочно связаны друг с другом, что все попытки изолировать их в индивидуальном виде не увенчались успехом. В комплексе имеются две свободные SH-группы, одна из которых, как и в АПБ, принадлежит фосфорилированному пантетеину, другая — цистеину. Все реакции синтеза Ж. к. протекают на поверхности или внутри этого мультиферментного комплекса. Свободные SH-группы комплекса (а возможно, и гидроксильная группа входящего в его состав серина) принимают участие в связывании ацетил-КоА и малонил-КоА, а во всех последующих реакциях пантетеиновая SH-группа комплекса выполняет такую же роль, как и SH-группа АПБ, т. е. участвует в связывании и переносе ацильного радикала:

Дальнейший ход реакций в животном организме точно такой же, как это представлено выше для Е. coli.

До середины 20 в. считалось, что печень является единственным органом, где происходит синтез Ж. к. Затем было установлено, что синтез Ж. к. происходит также в стенке кишечника, в легочной ткани, в жировой ткани, в костном мозге, в л актирующей молочной железе и даже в сосудистой стенке. Что касается клеточной локализации синтеза, то есть основания считать, что он протекает в цитоплазме клетки. Характерно, что в цитоплазме печеночных клеток синтезируется гл. обр. пальмитиновая к-та. Что касается других Ж. к., то основной путь их образования в печени заключается в удлинении цепи на основе уже синтезированной пальмитиновой кислоты или Ж. к. экзогенного происхождения, поступивших из кишечника. Таким путем образуются, напр., Ж. к., содержащие 18, 20 и 22 С-атома. Образование Ж. к. путем удлинения цепи происходит в митохондриях и микросомах клетки.

Биосинтез Ж. к. в животных тканях регулируется. Давно известно, что печень голодавших животных и животных, больных диабетом, медленно включает 14C-ацетат в Ж. к. То же самое наблюдалось и у животных, к-рым вводили избыточные количества жира. Характерно, что в гомогенатах печени таких животных медленно использовался для синтеза Ж. к. ацетил-КоА, но не малонил-КоА. Это послужило основанием предположить, что реакция, лимитирующая скорость процесса в целом, связана с активностью ацетил-КоА — карбоксилазы. Действительно, Ф. Линен показал, что длинно-цепочечные ацильные производные КоА в концентрации 10 -7 М ингибировали активность этой карбоксилазы. Т. о., само накопление Ж. к. оказывает тормозящее влияние на их биосинтез по механизму обратной связи.

Другим регулирующим фактором в синтезе Ж. к., по-видимому, является лимонная к-та (цитрат). Механизм действия цитрата также связывают с его влиянием на ацетил-КоА — карбоксилазу. В отсутствии цитрата ацетил-КоА — карбоксилаза печени находится в виде неактивного мономера с мол. весом 540 000. В присутствии же цитрата фермент превращается в активный тример, имеющий мол. вес ок. 1 800 000 и обеспечивающий 15— 16-кратное увеличение скорости синтеза Ж. к. Можно допустить, следовательно, что содержание цитрата в цитоплазме печеночных клеток оказывает регулирующее влияние на скорость синтеза Ж. к. Наконец, важное значение для синтеза Ж. к. имеет концентрация НАДФ-Н2 в клетке.

Обмен ненасыщенных жирных кислот

Получены убедительные доказательства, что в печени животных стеариновая к-та может превращаться в олеиновую, а пальмитиновая — в пальмитоолеиновую к-ту. Эти превращения, протекающие в микросомах клетки, требуют наличия молекулярного кислорода, восстановленной системы пиридиновых нуклеотидов и цитохрома b5. В микросомах может также осуществляться превращение мононенасыщенных к-т в диненасыщенные, напр, олеиновой к-ты в 6,9-октадекадиеновую к-ту. Наряду с десатурацией Ж. к. в микросомах протекает и их элонгация, причем оба эти процесса могут сочетаться и повторяться. Таким путем, напр., из олеиновой к-ты образуются нервоновая и 5, 8, 11-эйкозатетраеновая к-ты.

Вместе с тем ткани человека и ряда животных потеряли способность синтезировать некоторые полиненасыщенные к-ты. К ним относятся линолевая (9,12-октадекадиеновая), линоленовая (6,9,12-октадекатриеновая) и арахидоновая (5, 8, 11, 14-эйкозатетраеновая) к-ты. Эти к-ты относят к категории незаменимых Ж. к. При длительном их отсутствии в пище у животных наблюдается отставание в росте, развиваются характерные поражения со стороны кожи и волосяного покрова. Описаны случаи недостаточности незаменимых Ж. к. и у человека. Линолевая и линоленовая к-ты, содержащие соответственно две и три двойные связи, а также родственные им полиненасыщенные Ж. к. (арахидоновая и др.) условно объединены в группу под названием «витамин F».

Биол, роль незаменимых Ж. к. прояснилась в связи с открытием нового класса физиологически активных соединений — простагландинов (см.). Установлено, что арахидоновая к-та и в меньшей степени линолевая являются предшественниками этих соединений.

Ж. к. входят в состав разнообразных липидов: глицеридов, фосфатидов (см.), эфиров холестерина (см.), сфинголипидов (см.) и восков (см.).

Основная пластическая функция Ж. к. сводится к их участию в составе липидов в построении биол, мембран, составляющих скелет животных и растительных клеток. В биол, мембранах обнаружены гл. обр. эфиры следующих Ж. к.: стеариновой, пальмитиновой, олеиновой, линолевой, линоленовой, арахидоновой и докозагексаеновой. Ненасыщенные Ж. к. липидов биол, мембран могут окисляться с образованием липидных перекисей и гидроперекисей — так наз. перекисное окисление ненасыщенных Ж. к.

В организме животных и человека легко образуются лишь ненасыщенные Ж. к. с одной двойной связью (напр., олеиновая к-та). Гораздо медленнее образуются полиненасыщенные Ж. к., большая часть которых поставляется в организм с пищей (эссенциальные Ж. к.). Существуют специальные жировые депо, из которых после гидролиза (липолиза) жиров Ж. к. могут быть мобилизованы на удовлетворение нужд организма.

Экспериментально показано, что питание жирами, содержащими большие количества насыщенных Ж. к., способствует развитию гиперхолестеринемии; применение же с пищей растительных масел, содержащих большие количества ненасыщенных Ж. к., способствует снижению содержания холестерина в крови (см. Жировой обмен).

Наибольшее внимание медицина уделяет ненасыщенным Ж. к. Установлено, что избыточное окисление их по перекисному механизму может играть существенную роль при развитии различных патол, состояний, напр, при радиационных повреждениях, злокачественных новообразованиях, авитаминозе Е, гипероксии, отравлении четыреххлористым углеродом. Один из продуктов перекисного окисления ненасыщенных Ж. к.— липофусцин — накапливается в тканях при старении. Смесь этиловых эфиров ненасыщенных Ж. к., состоящая из олеиновой к-ты (ок. 15%), линолевой к-ты (ок. 15%) и линоленовой к-ты (ок. 57%), так наз. линетол (см.), используется в профилактике и лечении атеросклероза (см.) и наружно — при ожогах и лучевых поражениях кожи.

В клинике наиболее широко применяются методы количественного определения свободных (неэтерифицированных) и эфирносвязанных Ж. к. Методы количественного определения эфирносвязанных Ж. к. основаны на превращении их в соответствующие гидроксамовые к-ты, которые, взаимодействуя с ионами Fe 3+ , образуют цветные комплексные соли.

В норме в плазме крови содержится от 200 до 450 мг% этерифицированных Ж. к. и от 8 до 20 мг% неэтерифицированных Ж. к. Повышение содержания последних отмечается при диабете, нефрозах, после введения адреналина, при голодании, а также при эмоциональном стрессе. Понижение содержания неэтерифицированных Ж. к. наблюдается при гипотиреозах, при лечении глюкокортикоидами, а также после инъекции инсулина.

Источник

Adblock
detector